Zumkelle Number
Given an integer N, the task is to check if N is a Zumkelle Number
Zumkelle Number is a whose divisors can be partitioned into two sets with the same sum.
For example, 12 is a Zumkeller number because its divisors 1, 2, 3, 4, 6, 12, can be partitioned in the two sets {12, 2}, and {1, 3, 4, 6} with same sum 14.
Examples:
Input: N = 12
Output: Yes
Explanation:
12’s’ divisors 1, 2, 3, 4, 6, 12, can be partitioned
in the two sets {12, 2}, and {1, 3, 4, 6} with same sum 14.
Input: N = 26
Output: No
Approach: The idea is to store all the factors of the number in an array and then Finally, partition the array into two subsets such that the sum of elements in both the subset is same.
Partition problem for the same is explained in detail in this article:
Partition problem | DP-18
Below is the implementation of the above approach:
C++
// C++ Program to check if n // is an Zumkelle number #include <bits/stdc++.h> using namespace std; // Function to store divisors of N // in a vector void storeDivisors( int n, vector< int >& div ) { // Find all divisors which divides 'num' for ( int i = 1; i <= sqrt (n); i++) { // if 'i' is divisor of 'n' if (n % i == 0) { // if both divisors are same // then store it once else store // both divisors if (i == (n / i)) div .push_back(i); else { div .push_back(i); div .push_back(n / i); } } } } // Returns true if vector can be partitioned // in two subsets of equal sum, otherwise false bool isPartitionPossible(vector< int >& arr) { int n = arr.size(); int sum = 0; int i, j; // Calculate sum of all elements for (i = 0; i < n; i++) sum += arr[i]; if (sum % 2 != 0) return false ; bool part[sum / 2 + 1][n + 1]; // initialize top row as true for (i = 0; i <= n; i++) part[0][i] = true ; // initialize leftmost column, // except part[0][0], as 0 for (i = 1; i <= sum / 2; i++) part[i][0] = false ; // Fill the partition table // in bottom up manner for (i = 1; i <= sum / 2; i++) { for (j = 1; j <= n; j++) { part[i][j] = part[i][j - 1]; if (i >= arr[j - 1]) part[i][j] = part[i][j] || part[i - arr[j - 1]][j - 1]; } } return part[sum / 2][n]; } // Function to check if n // is an Zumkelle number bool isZumkelleNum( int N) { // vector to store all // proper divisors of N vector< int > div ; storeDivisors(N, div ); return isPartitionPossible( div ); } // Driver code int main() { int n = 12; if (isZumkelleNum(n)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java Program to check if n // is an Zumkelle number import java.util.*; class GFG{ // Function to store divisors of N // in a vector static void storeDivisors( int n, Vector<Integer> div) { // Find all divisors which divides 'num' for ( int i = 1 ; i <= Math.sqrt(n); i++) { // if 'i' is divisor of 'n' if (n % i == 0 ) { // if both divisors are same // then store it once else store // both divisors if (i == (n / i)) div.add(i); else { div.add(i); div.add(n / i); } } } } // Returns true if vector can be partitioned // in two subsets of equal sum, otherwise false static boolean isPartitionPossible (Vector<Integer> arr) { int n = arr.size(); int sum = 0 ; int i, j; // Calculate sum of all elements for (i = 0 ; i < n; i++) sum += arr.get(i); if (sum % 2 != 0 ) return false ; boolean [][]part = new boolean [sum / 2 + 1 ][n + 1 ]; // initialize top row as true for (i = 0 ; i <= n; i++) part[ 0 ][i] = true ; // initialize leftmost column, // except part[0][0], as 0 for (i = 1 ; i <= sum / 2 ; i++) part[i][ 0 ] = false ; // Fill the partition table // in bottom up manner for (i = 1 ; i <= sum / 2 ; i++) { for (j = 1 ; j <= n; j++) { part[i][j] = part[i][j - 1 ]; if (i >= arr.get(j - 1 )) part[i][j] = part[i][j] || part[i - arr.get(j - 1 )][j - 1 ]; } } return part[sum / 2 ][n]; } // Function to check if n // is an Zumkelle number static boolean isZumkelleNum( int N) { // vector to store all // proper divisors of N Vector<Integer> div = new Vector<Integer>(); storeDivisors(N, div); return isPartitionPossible(div); } // Driver code public static void main(String[] args) { int n = 12 ; if (isZumkelleNum(n)) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 implementation # Function to store divisors of N # in a vector def storeDivisors(n, div): # Find all divisors which divides 'num' for i in range ( 1 , 1 + int (n * * 0.5 )): # if 'i' is divisor of 'n' if (n % i = = 0 ): # if both divisors are same # then store it once else store # both divisors if (i = = int (n / i)): div.append(i); else : div.append(i); div.append( int (n / i)); # Returns true if vector can be partitioned # in two subsets of equal sum, otherwise false def isPartitionPossible( arr): n = len (arr); sums = 0 ; # Calculate sum of all elements for i in range (n): sums + = arr[i] if (sums % 2 ! = 0 ): return False ; part = []; for i in range ( 0 , 1 + int (sums / 2 )): ll = []; for j in range (n + 1 ): ll.append( False ); part.append(ll); # initialize top row as true for i in range ( 1 + n): part[ 0 ][i] = True ; # initialize leftmost column, # except part[0][0], as 0 for i in range ( 1 , 1 + int (sums / 2 )): part[i][ 0 ] = False ; # Fill the partition table # in bottom up manner for i in range ( 1 , 1 + int (sums / 2 )): for j in range ( 1 , 1 + n): part[i][j] = part[i][j - 1 ]; if (i > = arr[j - 1 ]): part[i][j] = part[i][j] or part[i - arr[j - 1 ]][j - 1 ]; return 1 ; #part[(Math.floor(sum / 2))][n]; # Function to check if n # is an Zumkelle number def isZumkelleNum(N): # vector to store all # proper divisors of N div = []; storeDivisors(N, div); return isPartitionPossible(div); # Driver Code # Given Number N N = 12 ; # Function Call if (isZumkelleNum(N)): print ( "Yes" ); else : print ( "No" ); # This code is contributed by phasing17 |
C#
// C# Program to check if n // is an Zumkelle number using System; using System.Collections.Generic; class GFG{ // Function to store divisors of N // in a vector static void storeDivisors( int n, List< int > div) { // Find all divisors which divides 'num' for ( int i = 1; i <= Math.Sqrt(n); i++) { // if 'i' is divisor of 'n' if (n % i == 0) { // if both divisors are same // then store it once else store // both divisors if (i == (n / i)) div.Add(i); else { div.Add(i); div.Add(n / i); } } } } // Returns true if vector can be partitioned // in two subsets of equal sum, otherwise false static bool isPartitionPossible (List< int > arr) { int n = arr.Count; int sum = 0; int i, j; // Calculate sum of all elements for (i = 0; i < n; i++) sum += arr[i]; if (sum % 2 != 0) return false ; bool [,]part = new bool [sum / 2 + 1, n + 1]; // initialize top row as true for (i = 0; i <= n; i++) part[0, i] = true ; // initialize leftmost column, // except part[0,0], as 0 for (i = 1; i <= sum / 2; i++) part[i, 0] = false ; // Fill the partition table // in bottom up manner for (i = 1; i <= sum / 2; i++) { for (j = 1; j <= n; j++) { part[i, j] = part[i, j - 1]; if (i >= arr[j - 1]) part[i, j] = part[i, j] || part[i - arr[j - 1], j - 1]; } } return part[sum / 2, n]; } // Function to check if n // is an Zumkelle number static bool isZumkelleNum( int N) { // vector to store all // proper divisors of N List< int > div = new List< int >(); storeDivisors(N, div); return isPartitionPossible(div); } // Driver code public static void Main(String[] args) { int n = 12; if (isZumkelleNum(n)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation // Function to store divisors of N // in a vector function storeDivisors(n, div) { // Find all divisors which divides 'num' for ( var i = 1; i <= Math.sqrt(n); i++) { // if 'i' is divisor of 'n' if (n % i == 0) { // if both divisors are same // then store it once else store // both divisors if (i == Math.floor(n / i)) div.push(i); else { div.push(i); div.push(Math.floor(n / i)); } } } } // Returns true if vector can be partitioned // in two subsets of equal sum, otherwise false function isPartitionPossible( arr) { var n = arr.length; var sum = 0; var i, j; // Calculate sum of all elements for (i = 0; i < n; i++) sum += arr[i]; if (sum % 2 != 0) return false ; var part = []; for (i = 0; i <= Math.floor(sum / 2); i++) { var ll = []; for (j = 0; j <= n; j++) { ll.push( false ); } part.push(ll); } // initialize top row as true for (i = 0; i <= n; i++) part[0][i] = true ; // initialize leftmost column, // except part[0][0], as 0 for (i = 1; i <= Math.floor(sum / 2); i++) part[i][0] = false ; // Fill the partition table // in bottom up manner for (i = 1; i <= Math.floor(sum / 2); i++) { for (j = 1; j <= n; j++) { part[i][j] = part[i][j - 1]; if (i >= arr[j - 1]) part[i][j] = part[i][j] || part[i - arr[j - 1]][j - 1]; } } return 1; //part[(Math.floor(sum / 2))][n]; } // Function to check if n // is an Zumkelle number function isZumkelleNum(N) { // vector to store all // proper divisors of N var div = []; storeDivisors(N, div); return isPartitionPossible(div); } // Driver Code // Given Number N var N = 12; // Function Call if (isZumkelleNum(N)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by shubhamsingh10 </script> |
Yes
Time Complexity: O(N * sum)
Reference: OEIS
Please Login to comment...