Skip to content
Related Articles
Open in App
Not now

Related Articles

Z score for Outlier Detection – Python

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 27 Aug, 2020
Improve Article
Save Article

Z score is an important concept in statistics. Z score is also called standard score. This score helps to understand if a data value is greater or smaller than mean and how far away it is from the mean. More specifically, Z score tells how many standard deviations away a data point is from the mean.

Z score = (x -mean) / std. deviation

A normal distribution is shown below and it is estimated that
68% of the data points lie between +/- 1 standard deviation.
95% of the data points lie between +/- 2 standard deviation
99.7% of the data points lie between +/- 3 standard deviation

Z score and Outliers:
If the z score of a data point is more than 3, it indicates that the data point is quite different from the other data points. Such a data point can be an outlier.
For example, in a survey, it was asked how many children a person had.
Suppose the data obtained from people is

1, 2, 2, 2, 3, 1, 1, 15, 2, 2, 2, 3, 1, 1, 2

Clearly, 15 is an outlier in this dataset.

Let us use calculate the Z score using Python to find this outlier.
Step 1: Import necessary libraries

import numpy as np 

Step 2: Calculate mean, standard deviation

data = [1, 2, 2, 2, 3, 1, 1, 15, 2, 2, 2, 3, 1, 1, 2]
mean = np.mean(data)
std = np.std(data)
print('mean of the dataset is', mean)
print('std. deviation is', std)


mean of the dataset is 2.6666666666666665
std. deviation is 3.3598941782277745

Step 3: Calculate Z score. If Z score>3, print it as an outlier.

threshold = 3
outlier = []
for i in data:
    z = (i-mean)/std
    if z > threshold:
print('outlier in dataset is', outlier)


outlier in dataset is [15]

Conclusion: Z score helps us identify outliers in the data.

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!