Word Ladder (Length of shortest chain to reach a target word)
Given a dictionary, and two words ‘start’ and ‘target’ (both of same length). Find length of the smallest chain from ‘start’ to ‘target’ if it exists, such that adjacent words in the chain only differ by one character and each word in the chain is a valid word i.e., it exists in the dictionary. It may be assumed that the ‘target’ word exists in dictionary and length of all dictionary words is same.
Example:
Input: Dictionary = {POON, PLEE, SAME, POIE, PLEA, PLIE, POIN}, start = TOON, target = PLEA
Output: 7
Explanation: TOON – POON – POIN – POIE – PLIE – PLEE – PLEAInput: Dictionary = {ABCD, EBAD, EBCD, XYZA}, start = ABCV, target = EBAD
Output: 4
Explanation: ABCV – ABCD – EBCD – EBAD
Approach: The idea to solve the problem is to use BFS. To find the shortest path through BFS, start from the start word and push it in a queue. And once the target is found for the first time, then return that level of BFS traversal. In each step of BFS one can get all the words that can be formed using that many steps. So whenever the target word is found for the first time that will be the length of the shortest chain of words.
- Start from the given start word.
- Push the word in the queue
- Run a loop until the queue is empty
- Traverse all words that adjacent (differ by one character) to it and push the word in a queue (for BFS)
- Keep doing so until we find the target word or we have traversed all words.
Below are the implementations of the above idea.
C++
// C++ program to find length // of the shortest chain // transformation from source // to target #include <bits/stdc++.h> using namespace std; // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent // moves. D is dictionary int shortestChainLen( string start, string target, set<string>& D) { if (start == target) return 0; // If the target string is not // present in the dictionary if (D.find(target) == D.end()) return 0; // To store the current chain length // and the length of the words int level = 0, wordlength = start.size(); // Push the starting word into the queue queue<string> Q; Q.push(start); // While the queue is non-empty while (!Q.empty()) { // Increment the chain length ++level; // Current size of the queue int sizeofQ = Q.size(); // Since the queue is being updated while // it is being traversed so only the // elements which were already present // in the queue before the start of this // loop will be traversed for now for ( int i = 0; i < sizeofQ; ++i) { // Remove the first word from the queue string word = Q.front(); Q.pop(); // For every character of the word for ( int pos = 0; pos < wordlength; ++pos) { // Retain the original character // at the current position char orig_char = word[pos]; // Replace the current character with // every possible lowercase alphabet for ( char c = 'a' ; c <= 'z' ; ++c) { word[pos] = c; // If the new word is equal // to the target word if (word == target) return level + 1; // Remove the word from the set // if it is found in it if (D.find(word) == D.end()) continue ; D.erase(word); // And push the newly generated word // which will be a part of the chain Q.push(word); } // Restore the original character // at the current position word[pos] = orig_char; } } } return 0; } // Driver program int main() { // make dictionary set<string> D; D.insert( "poon" ); D.insert( "plee" ); D.insert( "same" ); D.insert( "poie" ); D.insert( "plie" ); D.insert( "poin" ); D.insert( "plea" ); string start = "toon" ; string target = "plea" ; cout << "Length of shortest chain is: " << shortestChainLen(start, target, D); return 0; } |
Java
// Java program to find length // of the shortest chain // transformation from source // to target import java.util.*; class GFG { // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent moves. // D is dictionary static int shortestChainLen(String start, String target, Set<String> D) { if (start == target) return 0 ; // If the target String is not // present in the dictionary if (!D.contains(target)) return 0 ; // To store the current chain length // and the length of the words int level = 0 , wordlength = start.length(); // Push the starting word into the queue Queue<String> Q = new LinkedList<>(); Q.add(start); // While the queue is non-empty while (!Q.isEmpty()) { // Increment the chain length ++level; // Current size of the queue int sizeofQ = Q.size(); // Since the queue is being updated while // it is being traversed so only the // elements which were already present // in the queue before the start of this // loop will be traversed for now for ( int i = 0 ; i < sizeofQ; ++i) { // Remove the first word from the queue char []word = Q.peek().toCharArray(); Q.remove(); // For every character of the word for ( int pos = 0 ; pos < wordlength; ++pos) { // Retain the original character // at the current position char orig_char = word[pos]; // Replace the current character with // every possible lowercase alphabet for ( char c = 'a' ; c <= 'z' ; ++c) { word[pos] = c; // If the new word is equal // to the target word if (String.valueOf(word).equals(target)) return level + 1 ; // Remove the word from the set // if it is found in it if (!D.contains(String.valueOf(word))) continue ; D.remove(String.valueOf(word)); // And push the newly generated word // which will be a part of the chain Q.add(String.valueOf(word)); } // Restore the original character // at the current position word[pos] = orig_char; } } } return 0 ; } // Driver code public static void main(String[] args) { // make dictionary Set<String> D = new HashSet<String>(); D.add( "poon" ); D.add( "plee" ); D.add( "same" ); D.add( "poie" ); D.add( "plie" ); D.add( "poin" ); D.add( "plea" ); String start = "toon" ; String target = "plea" ; System.out.print( "Length of shortest chain is: " + shortestChainLen(start, target, D)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to find length of the # shortest chain transformation from source # to target from collections import deque # Returns length of shortest chain # to reach 'target' from 'start' # using minimum number of adjacent # moves. D is dictionary def shortestChainLen(start, target, D): if start = = target: return 0 # If the target is not # present in the dictionary if target not in D: return 0 # To store the current chain length # and the length of the words level, wordlength = 0 , len (start) # Push the starting word into the queue Q = deque() Q.append(start) # While the queue is non-empty while ( len (Q) > 0 ): # Increment the chain length level + = 1 # Current size of the queue sizeofQ = len (Q) # Since the queue is being updated while # it is being traversed so only the # elements which were already present # in the queue before the start of this # loop will be traversed for now for i in range (sizeofQ): # Remove the first word from the queue word = [j for j in Q.popleft()] #Q.pop() # For every character of the word for pos in range (wordlength): # Retain the original character # at the current position orig_char = word[pos] # Replace the current character with # every possible lowercase alphabet for c in range ( ord ( 'a' ), ord ( 'z' ) + 1 ): word[pos] = chr (c) # If the new word is equal # to the target word if ("".join(word) = = target): return level + 1 # Remove the word from the set # if it is found in it if ("".join(word) not in D): continue del D["".join(word)] # And push the newly generated word # which will be a part of the chain Q.append("".join(word)) # Restore the original character # at the current position word[pos] = orig_char return 0 # Driver code if __name__ = = '__main__' : # Make dictionary D = {} D[ "poon" ] = 1 D[ "plee" ] = 1 D[ "same" ] = 1 D[ "poie" ] = 1 D[ "plie" ] = 1 D[ "poin" ] = 1 D[ "plea" ] = 1 start = "toon" target = "plea" print ( "Length of shortest chain is: " , shortestChainLen(start, target, D)) # This code is contributed by mohit kumar 29 |
C#
// C# program to find length of the shortest chain // transformation from source to target using System; using System.Collections.Generic; class GFG { // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent moves. // D is dictionary static int shortestChainLen(String start, String target, HashSet<String> D) { if (start == target) return 0; // If the target String is not // present in the dictionary if (!D.Contains(target)) return 0; // To store the current chain length // and the length of the words int level = 0, wordlength = start.Length; // Push the starting word into the queue List<String> Q = new List<String>(); Q.Add(start); // While the queue is non-empty while (Q.Count != 0) { // Increment the chain length ++level; // Current size of the queue int sizeofQ = Q.Count; // Since the queue is being updated while // it is being traversed so only the // elements which were already present // in the queue before the start of this // loop will be traversed for now for ( int i = 0; i < sizeofQ; ++i) { // Remove the first word from the queue char []word = Q[0].ToCharArray(); Q.RemoveAt(0); // For every character of the word for ( int pos = 0; pos < wordlength; ++pos) { // Retain the original character // at the current position char orig_char = word[pos]; // Replace the current character with // every possible lowercase alphabet for ( char c = 'a' ; c <= 'z' ; ++c) { word[pos] = c; // If the new word is equal // to the target word if (String.Join( "" , word).Equals(target)) return level + 1; // Remove the word from the set // if it is found in it if (!D.Contains(String.Join( "" , word))) continue ; D.Remove(String.Join( "" , word)); // And push the newly generated word // which will be a part of the chain Q.Add(String.Join( "" , word)); } // Restore the original character // at the current position word[pos] = orig_char; } } } return 0; } // Driver code public static void Main(String[] args) { // make dictionary HashSet<String> D = new HashSet<String>(); D.Add( "poon" ); D.Add( "plee" ); D.Add( "same" ); D.Add( "poie" ); D.Add( "plie" ); D.Add( "poin" ); D.Add( "plea" ); String start = "toon" ; String target = "plea" ; Console.Write( "Length of shortest chain is: " + shortestChainLen(start, target, D)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to find length // of the shortest chain // transformation from source // to target // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent moves. // D is dictionary function shortestChainLen(start,target,D) { if (start == target) return 0; // If the target String is not // present in the dictionary if (!D.has(target)) return 0; // To store the current chain length // and the length of the words let level = 0, wordlength = start.length; // Push the starting word into the queue let Q = []; Q.push(start); // While the queue is non-empty while (Q.length != 0) { // Increment the chain length ++level; // Current size of the queue let sizeofQ = Q.length; // Since the queue is being updated while // it is being traversed so only the // elements which were already present // in the queue before the start of this // loop will be traversed for now for (let i = 0; i < sizeofQ; ++i) { // Remove the first word from the queue let word = Q[0].split( "" ); Q.shift(); // For every character of the word for (let pos = 0; pos < wordlength; ++pos) { // Retain the original character // at the current position let orig_char = word[pos]; // Replace the current character with // every possible lowercase alphabet for (let c = 'a' .charCodeAt(0); c <= 'z' .charCodeAt(0); ++c) { word[pos] = String.fromCharCode(c); // If the new word is equal // to the target word if (word.join( "" ) == target) return level + 1; // Remove the word from the set // if it is found in it if (!D.has(word.join( "" ))) continue ; D. delete (word.join( "" )); // And push the newly generated word // which will be a part of the chain Q.push(word.join( "" )); } // Restore the original character // at the current position word[pos] = orig_char; } } } return 0; } // Driver code // make dictionary let D = new Set(); D.add( "poon" ); D.add( "plee" ); D.add( "same" ); D.add( "poie" ); D.add( "plie" ); D.add( "poin" ); D.add( "plea" ); let start = "toon" ; let target = "plea" ; document.write( "Length of shortest chain is: " + shortestChainLen(start, target, D)); // This code is contributed by unknown2108 </script> |
Length of shortest chain is: 7
Time Complexity: O(N² * M), where N is the number of entries originally in the dictionary and M is the size of the string.
Auxiliary Space: O(M * N)
Alternate Implementation: (Maintaining the mapping of the intermediate words and the original word):
Below is an alternative implementation to the above approach.
Here, in this approach, we find out all the intermediate words of the start word and the words in the given list of dictionary and maintain a map of the intermediate word and a vector of the original word (map<string, vector<string>>). For instance, for the word “POON”, the intermediate words are “*OON” , “P*ON”, “PO*N”, “POO*”. Then, we perform BFS traversal starting with the start word and push a pair of start word and the distance (pair(word, distance)) to the queue until we reach the target word. Then, the distance is our answer.
C++
// C++ program to find length // of the shortest chain // transformation from source // to target #include <bits/stdc++.h> using namespace std; // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent // moves. D is dictionary int shortestChainLen( string start, string target, set<string>& D) { if (start == target) return 0; // Map of intermediate words and // the list of original words map<string, vector<string>> umap; // Find all the intermediate // words for the start word for ( int i = 0; i < start.size(); i++) { string str = start.substr(0,i) + "*" + start.substr(i+1); umap[str].push_back(start); } // Find all the intermediate words for // the words in the given Set for ( auto it = D.begin(); it != D.end(); it++) { string word = *it; for ( int j = 0; j < word.size(); j++) { string str = word.substr(0,j) + "*" + word.substr(j+1); umap[str].push_back(word); } } // Perform BFS and push (word, distance) queue<pair<string, int >> q; map<string, int > visited; q.push(make_pair(start,1)); visited[start] = 1; // Traverse until queue is empty while (!q.empty()) { pair<string, int > p = q.front(); q.pop(); string word = p.first; int dist = p.second; // If target word is found if (word == target) { return dist; } // Finding intermediate words for // the word in front of queue for ( int i = 0; i < word.size(); i++) { string str = word.substr(0,i) + "*" + word.substr(i+1); vector<string> vect = umap[str]; for ( int j = 0; j < vect.size(); j++) { // If the word is not visited if (visited[vect[j]] == 0) { visited[vect[j]] = 1; q.push(make_pair(vect[j], dist + 1)); } } } } return 0; } // Driver code int main() { // Make dictionary set<string> D; D.insert( "poon" ); D.insert( "plee" ); D.insert( "same" ); D.insert( "poie" ); D.insert( "plie" ); D.insert( "poin" ); D.insert( "plea" ); string start = "toon" ; string target = "plea" ; cout << "Length of shortest chain is: " << shortestChainLen(start, target, D); return 0; } |
Java
// Java program to find length // of the shortest chain // transformation from source // to target import java.util.*; public class GFG{ static class pair { String first; int second; public pair(String first, int second) { this .first = first; this .second = second; } } // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent // moves. D is dictionary static int shortestChainLen( String start, String target, HashSet<String> D) { if (start == target) return 0 ; // Map of intermediate words and // the list of original words Map<String, Vector<String>> umap = new HashMap<>(); // Find all the intermediate // words for the start word for ( int i = 0 ; i < start.length(); i++) { String str = start.substring( 0 ,i) + "*" + start.substring(i+ 1 ); Vector<String> s = umap.get(str); if (s== null ) s = new Vector<String>(); s.add(start); umap.put(str, s); } // Find all the intermediate words for // the words in the given Set for (String it : D) { String word = it; for ( int j = 0 ; j < word.length(); j++) { String str = word.substring( 0 , j) + "*" + word.substring(j + 1 ); Vector<String> s = umap.get(str); if (s == null ) s = new Vector<String>(); s.add(word); umap.put(str, s); } } // Perform BFS and push (word, distance) Queue<pair> q = new LinkedList<>(); Map<String, Integer> visited = new HashMap<String, Integer>(); q.add( new pair(start, 1 )); visited.put(start, 1 ); // Traverse until queue is empty while (!q.isEmpty()) { pair p = q.peek(); q.remove(); String word = p.first; int dist = p.second; // If target word is found if (word == target) { return dist; } // Finding intermediate words for // the word in front of queue for ( int i = 0 ; i < word.length(); i++) { String str = word.substring( 0 , i) + "*" + word.substring(i + 1 ); Vector<String> vect = umap.get(str); for ( int j = 0 ; j < vect.size(); j++) { // If the word is not visited if (!visited.containsKey(vect.get(j)) ) { visited.put(vect.get(j), 1 ); q.add( new pair(vect.get(j), dist + 1 )); } } } } return 0 ; } // Driver code public static void main(String[] args) { // Make dictionary HashSet<String> D = new HashSet<String>(); D.add( "poon" ); D.add( "plee" ); D.add( "same" ); D.add( "poie" ); D.add( "plie" ); D.add( "poin" ); D.add( "plea" ); String start = "toon" ; String target = "plea" ; System.out.print( "Length of shortest chain is: " + shortestChainLen(start, target, D)); } } // This code is contributed by 29AjayKumar |
Python3
from typing import List , Tuple , Set , Dict , Any , Union def shortest_chain_len(start: str , target: str , D: Set [ str ]) - > int : if start = = target: return 0 # Dictionary of intermediate words and # the list of original words umap: Dict [ str , List [ str ]] = {} # Initialize umap with empty lists for i in range ( len (start)): intermediate_word = start[:i] + "*" + start[i + 1 :] umap[intermediate_word] = [] # Find all the intermediate words for # the words in the given Set for word in D: for i in range ( len (word)): intermediate_word = word[:i] + "*" + word[i + 1 :] if intermediate_word not in umap: umap[intermediate_word] = [] umap[intermediate_word].append(word) # Perform BFS and push (word, distance) q = [(start, 1 )] visited = {start: 1 } # Traverse until queue is empty while q: word, dist = q.pop( 0 ) # If target word is found if word = = target: return dist # Finding intermediate words for # the word in front of queue for i in range ( len (word)): intermediate_word = word[:i] + '*' + word[i + 1 :] vect = umap[intermediate_word] for k in range ( len (vect)): # If the word is not visited if vect[k] not in visited: visited[vect[k]] = 1 q.append((vect[k], dist + 1 )) return 0 # Test # Make dictionary D = { 'poon' , 'plee' , 'same' , 'poie' , 'plie' , 'poin' , 'plea' } start = "toon" target = "plea" print (f "Length of shortest chain is: {shortest_chain_len(start, target, D)}" ) # This code is contributed by vikramshirsath177 |
C#
// C# program to find length // of the shortest chain // transformation from source // to target using System; using System.Collections.Generic; using System.Linq; namespace GFG { public class GFG { class pair { public string first; public int second; public pair( string first, int second) { this .first = first; this .second = second; } } // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent // moves. D is dictionary static int shortestChainLen( string start, string target, HashSet< string > D) { if (start == target) return 0; // Map of intermediate words and // the list of original words Dictionary< string , List< string > > umap = new Dictionary< string , List< string > >(); // Find all the intermediate // words for the start word for ( int i = 0; i < start.Length; i++) { string str = start.Substring(0, i) + "*" + start.Substring(i + 1); if (!umap.ContainsKey(str)) umap[str] = new List< string >(); umap[str].Add(start); } // Find all the intermediate words for // the words in the given Set foreach ( string it in D) { string word = it; for ( int j = 0; j < word.Length; j++) { string str = word.Substring(0, j) + "*" + word.Substring(j + 1); if (!umap.ContainsKey(str)) umap[str] = new List< string >(); umap[str].Add(word); } } // Perform BFS and push (word, distance) Queue<pair> q = new Queue<pair>(); Dictionary< string , int > visited = new Dictionary< string , int >(); q.Enqueue( new pair(start, 1)); visited[start] = 1; // Traverse until queue is empty while (q.Count != 0) { pair p = q.Peek(); q.Dequeue(); string word = p.first; int dist = p.second; // If target word is found if (word == target) { return dist; } // Finding intermediate words for // the word in front of queue for ( int i = 0; i < word.Length; i++) { string str = word.Substring(0, i) + "*" + word.Substring(i + 1); List< string > vect = umap.ContainsKey(str) ? umap[str] : new List< string >(); foreach ( string s in vect) { // If the word is not visited if (!visited.ContainsKey(s)) { visited[s] = 1; q.Enqueue( new pair(s, dist + 1)); } } } } return 0; } // Driver code public static void Main( string [] args) { // Make dictionary HashSet< string > D = new HashSet< string >() { "poon" , "plee" , "same" , "poie" , "plie" , "poin" , "plea" }; string start = "toon" ; string target = "plea" ; Console.WriteLine( "Length of shortest chain is: " + shortestChainLen(start, target, D)); } } } // This code is contributed by prajwal kandekar |
Javascript
// Javascript program to find length of the shortest chain transformation //from source to target // program to implement queue data structure class Queue { constructor() { this .items = []; } // add element to the queue push(element) { return this .items.push(element); } // remove element from the queue pop() { if ( this .items.length > 0) { return this .items.shift(); } } // view the first element front() { return this .items[0]; } // check if the queue is empty empty() { return this .items.length == 0; } // the size of the queue size() { return this .items.length; } // empty the queue clear() { this .items = []; } } // Returns length of shortest chain // to reach 'target' from 'start' // using minimum number of adjacent // moves. D is dictionary function shortestChainLen(start, target, D) { if (start == target) { return 0; } // Map of intermediate words and // the list of original words let umap = new Map(); // Find all the intermediate // words for the start word for (let i = 0; i < start.length; i++) { let str = start.slice(0, i) + "*" + start.slice(i + 1); if (umap.get(str) === undefined) { umap.set(str, [start]); } else { let brr = umap.get(str); brr.push(start); umap.set(str, brr); } } // Find all the intermediate words for // the words in the given Set for (it of D.values()) { let word = it; for (let j = 0; j < word.length; j++) { let str = word.slice(0, j) + "*" + word.slice(j + 1); if (umap.get(str) === undefined) { umap.set(str, [word]); } else { let arr = umap.get(str); arr.push(word); umap.set(str, arr); } } } // Perform BFS and push (word, distance) let q = new Queue(); let visited = new Map(); q.push([start, 1]); visited.set(start, 1); // Traverse until queue is empty while (!q.empty()) { let p = q.front(); q.pop(); let word = p[0]; let dist = p[1]; // If target word is found if (word == target) { return dist; } // Finding intermediate words for // the word in front of queue for (let i = 0; i < word.length; i++) { let str = word.slice(0, i) + "*" + word.slice(i + 1); let vect = umap.get(str); for (let j = 0; j < vect.length; j++) { // If the word is not visited if (visited.get(vect[j]) === undefined) { visited.set(vect[j], 1); q.push([vect[j], dist + 1]); } } } } return 0; } //Driver Code // Make dictionary let D = new Set(); D.add( "poon" ); D.add( "plee" ); D.add( "same" ); D.add( "poie" ); D.add( "plie" ); D.add( "poin" ); D.add( "plea" ); let start = "toon" ; let target = "plea" ; console.log( "Length of shortest chain is: " + shortestChainLen(start, target, D) ); |
Length of shortest chain is: 7
Time Complexity: O(N² * M), where N is the number of entries originally in the dictionary and M is the size of the string.
Auxiliary Space: O(M * N)
Please Login to comment...