What are the Logical Expressions in Sympy?
SymPy is a symbolic mathematics Python package. Its goal is to develop into a completely featured computer algebra system while keeping the code as basic as possible to make it understandable and extendable. The package is entirely written in python language. Logical expressions in sympy are expressed by using boolean functions. sympy.basic.booleanarg module of sympy contains boolean functions.
The common Python operators & (And), | (Or), and ~ (Not) can be used to create Boolean expressions. >> and can also be used to create implications. other boolean operations or gates are NAND, NOR, XOR, etc.
Boolean True:
sympy.logic.boolalg.BooleanTrue
Boolean True in SymPy is a singleton that can be accessed with S.true, or by directly importing True or by importing simplify from the sympy package.
Python3
# import packages from sympy import true from sympy import S, sympify # prints True print (true) # prints True print (S.true) # prints true print (sympify(true)) |
Output:
True True True
Boolean False:
sympy.logic.boolalg.BooleanFalse
Boolean False in SymPy is a singleton that can be accessed with S.false, or by directly importing false or by importing simplify from the sympy package.
Python3
# import packages from sympy import false from sympy import S, sympify # prints False print (false) # prints False print (S.false) # prints False print (sympify(false)) |
Output:
False False False
negation of true is false, and negation of false is true.
Python3
# import packages from sympy import false, true print (~true,~false) |
Output:
False True
Boolean And:
sympy.logic.boolalg.And
It analyzes each of its arguments in sequence, it returns true if all of the arguments are true. if at least one argument is false, false is returned.
- true &true = true
- true&false = false
- false & true = false
- false&false = false
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import And res = x & y print (res) # 1&y ==y print (And(x, y).subs(x, 1 )) # 0&y ==0 or False print (And(x, y).subs(x, 0 )) # True&False == False print (And( True , False )) # True & True == True print (And( True , True )) # False & False == False print (And( False , False )) # False & True == False print (And( False , True )) |
Output:
x & y y False False True False False
Boolean Or:
sympy.logic.boolalg.Or
If any of the arguments is true, True is returned or else false is returned.
- true |true = true
- true|false = true
- false | true = true
- false|false = false
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import Or res = x | y print (res) # 1&y == 1 or True print (Or(x, y).subs(x, 1 )) # 0|y ==y print (Or(x, y).subs(x, 0 )) # True | False == True print (Or( True , False )) # True | True == True print (Or( True , True )) # False | False == False print (Or( False , False )) # False | True == True print (Or( False , True )) |
Output:
x | y True y True True False True
Boolean Not:
sympy.logic.boolalg.Not(arg)
Not represents negation. If the statement is False, this method returns True. If the assertion is true, it returns False.
Python3
# import packages from sympy.abc import x from sympy.logic.boolalg import Not # nor formula print (Not(x)) # ~True == True print (Not( True )) # ~False == False print (Not( False )) |
Output:
~x False True
Boolean Nor:
sympy.logic.boolalg.Nor(*args)
Nor is a conjunction of Not and Or. Nor = Not+Or. It examines each argument in turn, returning False if any of them are True and True if all of them are False. If any argument is True, returns False. If all arguments are False, this function returns True.
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import Nor nor_formula = ~(x | y) print (nor_formula) print (Nor(x, y)) # ~( True | False) == False print (Nor( True , False )) # ~(True | True) == False print (Nor( True , True )) # ~(False | False) == True print (Nor( False , False )) # ~(False | True) == False print (Nor( False , True )) |
Output:
~(x | y) ~(x | y) False False True False
Boolean Nand:
sympy.logic.boolalg.Nand(*args)
Nand is a conjunction of Not and. Nor = Not+And. It analyses each of its inputs in succession, returning True if any of them are False and False if all of them are True. If any of the inputs are False, this function returns True. If all arguments are True, returns False.
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import Nand # not + nand == nand nor_formula = ~(x & y) print (nor_formula) print (Nand(x, y)) # ~( True & False) == True print (Nand( True , False )) # ~(True & True) == False print (Nand( True , True )) # ~(False & False) == True print (Nand( False , False )) # ~(False & True) == True print (Nand( False , True )) |
Output:
~(x & y) ~(x & y) True False True True
Boolean Xor:
sympy.logic.boolalg.Xor(*args)
Xor represents Logical XOR or Exclusive Or function. If an odd number of the arguments are True and the others are False, this function returns True. If an even number of the arguments are True and the others are False, the result is False.
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import Xor xor_formula = x ^ y print (xor_formula) print (Xor(x, y)) # True ^ False == True print (Xor( True , False )) # True ^ True == False print (Xor( True , True )) # False ^ False == False print (Xor( False , False )) # False ^ True == True print (Xor( False , True )) |
Output:
x ^ y x ^ y True False False True
Boolean Xnor:
sympy.logic.boolalg.Xnor(*args)
Exclusive-NOR gate or XNOR gate is formed by combining the Exclusive-OR gate (XOR gate) and the NOT gate.
Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False.
Python3
# import packages from sympy.abc import x, y from sympy.logic.boolalg import Xnor xnor_formula = ~(x ^ y) print (xnor_formula) print (Xnor(x,y)) # ~(True ^ False) == False print (Xnor( True , False )) # ~(True ^ True) == True print (Xnor( True , True )) # ~(False ^ True) == False print (Xnor( False , True )) # ~(False ^ False) == True print (Xnor( False , False )) |
Output:
~(x ^ y) ~(x ^ y) False True False True
Boolean Implies:
sympy.logic.boolalg.Implies(*args)
Implies refer to Logical implications. x implies y is equivalent to !x v y. Accepts x and y as Boolean inputs. If x is True and y is False, returns False. Otherwise, True is returned.
Python3
from sympy.abc import x, y from sympy.logic.boolalg import Implies # !A v B == implies formula # returns false when A is true and B is # false, rest all cases returns True print (Implies(x, y)) # false print (Implies( True , False )) # true print (Implies( True , True )) # true print (Implies( False , False )) # true print (Implies( False , True )) print (x << y) print (x >> y) |
Output:
Implies(x, y) False True True True Implies(y, x) Implies(x, y)
Boolean Equivalent
sympy.logic.boolalg.Equivalent(*args)
Refers to an Equivalence relation. If x and y are both True or False, Equivalent(x, y) is True. If all of the arguments are logically equivalent, True is returned. Otherwise, False is returned.
Python3
from sympy.abc import x, y, z from sympy.logic.boolalg import Equivalent, And, Or print (Equivalent(x, y, z)) # true != false so it returns false print (Equivalent( True , False )) # True == True so it returns true print (Equivalent( True , True )) # False == False so it returns true print (Equivalent( False , False )) # False !=True so it returns false print (Equivalent( False , True )) # true ==true == true so it returns true print (Equivalent( True , Or( True , False ), And( True , True ))) |
Output:
Equivalent(x, y, z) False True True False True
Boolean ITE:
sympy.logic.boolalg.ITE(*args)
ITE refers to the If then else clause. If A is true, ITE(x, y, z) evaluates and returns the result of y; otherwise, ITE(x, y, z) evaluates and returns the result of z. All of the arguments must be Booleans.
Python3
from sympy.abc import x, y, z from sympy.logic.boolalg import ITE, Nor, Nand, Xor, Or, And # ITE == if then else print (ITE(x, y, z)) # x is true so y is returned print (ITE( True , Or( True , False ), And( True , True ))) # x is false so z is returned print (ITE(Nor( True , False ), Xor( True , False ), Nand( True , True ))) |
Output:
ITE(x, y, z) True False
Please Login to comment...