Warnsdorff’s algorithm for Knight’s tour problem
Problem : A knight is placed on the first block of an empty board and, moving according to the rules of chess, must visit each square exactly once.
Following is an example path followed by Knight to cover all the cells. The below grid represents a chessboard with 8 x 8 cells. Numbers in cells indicate move number of Knight.
We have discussed Backtracking Algorithm for solution of Knight’s tour. In this post Warnsdorff’s heuristic is discussed.
Warnsdorff’s Rule:
- We can start from any initial position of the knight on the board.
- We always move to an adjacent, unvisited square with minimal degree (minimum number of unvisited adjacent).
This algorithm may also more generally be applied to any graph.
Some definitions:
- A position Q is accessible from a position P if P can move to Q by a single Knight’s move, and Q has not yet been visited.
- The accessibility of a position P is the number of positions accessible from P.
Algorithm:
- Set P to be a random initial position on the board
- Mark the board at P with the move number “1”
- Do following for each move number from 2 to the number of squares on the board:
- let S be the set of positions accessible from P.
- Set P to be the position in S with minimum accessibility
- Mark the board at P with the current move number
- Return the marked board — each square will be marked with the move number on which it is visited.
Below is implementation of above algorithm.
C++
// C++ program to for Knight's tour problem using // Warnsdorff's algorithm #include <bits/stdc++.h> #define N 8 // Move pattern on basis of the change of // x coordinates and y coordinates respectively static int cx[N] = {1,1,2,2,-1,-1,-2,-2}; static int cy[N] = {2,-2,1,-1,2,-2,1,-1}; // function restricts the knight to remain within // the 8x8 chessboard bool limits( int x, int y) { return ((x >= 0 && y >= 0) && (x < N && y < N)); } /* Checks whether a square is valid and empty or not */ bool isempty( int a[], int x, int y) { return (limits(x, y)) && (a[y*N+x] < 0); } /* Returns the number of empty squares adjacent to (x, y) */ int getDegree( int a[], int x, int y) { int count = 0; for ( int i = 0; i < N; ++i) if (isempty(a, (x + cx[i]), (y + cy[i]))) count++; return count; } // Picks next point using Warnsdorff's heuristic. // Returns false if it is not possible to pick // next point. bool nextMove( int a[], int *x, int *y) { int min_deg_idx = -1, c, min_deg = (N+1), nx, ny; // Try all N adjacent of (*x, *y) starting // from a random adjacent. Find the adjacent // with minimum degree. int start = rand ()%N; for ( int count = 0; count < N; ++count) { int i = (start + count)%N; nx = *x + cx[i]; ny = *y + cy[i]; if ((isempty(a, nx, ny)) && (c = getDegree(a, nx, ny)) < min_deg) { min_deg_idx = i; min_deg = c; } } // IF we could not find a next cell if (min_deg_idx == -1) return false ; // Store coordinates of next point nx = *x + cx[min_deg_idx]; ny = *y + cy[min_deg_idx]; // Mark next move a[ny*N + nx] = a[(*y)*N + (*x)]+1; // Update next point *x = nx; *y = ny; return true ; } /* displays the chessboard with all the legal knight's moves */ void print( int a[]) { for ( int i = 0; i < N; ++i) { for ( int j = 0; j < N; ++j) printf ( "%d\t" ,a[j*N+i]); printf ( "\n" ); } } /* checks its neighbouring squares */ /* If the knight ends on a square that is one knight's move from the beginning square, then tour is closed */ bool neighbour( int x, int y, int xx, int yy) { for ( int i = 0; i < N; ++i) if (((x+cx[i]) == xx)&&((y + cy[i]) == yy)) return true ; return false ; } /* Generates the legal moves using warnsdorff's heuristics. Returns false if not possible */ bool findClosedTour() { // Filling up the chessboard matrix with -1's int a[N*N]; for ( int i = 0; i< N*N; ++i) a[i] = -1; // Random initial position int sx = rand ()%N; int sy = rand ()%N; // Current points are same as initial points int x = sx, y = sy; a[y*N+x] = 1; // Mark first move. // Keep picking next points using // Warnsdorff's heuristic for ( int i = 0; i < N*N-1; ++i) if (nextMove(a, &x, &y) == 0) return false ; // Check if tour is closed (Can end // at starting point) if (!neighbour(x, y, sx, sy)) return false ; print(a); return true ; } // Driver code int main() { // To make sure that different random // initial positions are picked. srand ( time (NULL)); // While we don't get a solution while (!findClosedTour()) { ; } return 0; } |
Java
// Java program to for Knight's tour problem using // Warnsdorff's algorithm import java.util.concurrent.ThreadLocalRandom; class GFG { public static final int N = 8 ; // Move pattern on basis of the change of // x coordinates and y coordinates respectively public static final int cx[] = { 1 , 1 , 2 , 2 , - 1 , - 1 , - 2 , - 2 }; public static final int cy[] = { 2 , - 2 , 1 , - 1 , 2 , - 2 , 1 , - 1 }; // function restricts the knight to remain within // the 8x8 chessboard boolean limits( int x, int y) { return ((x >= 0 && y >= 0 ) && (x < N && y < N)); } /* Checks whether a square is valid and empty or not */ boolean isempty( int a[], int x, int y) { return (limits(x, y)) && (a[y * N + x] < 0 ); } /* Returns the number of empty squares adjacent to (x, y) */ int getDegree( int a[], int x, int y) { int count = 0 ; for ( int i = 0 ; i < N; ++i) if (isempty(a, (x + cx[i]), (y + cy[i]))) count++; return count; } // Picks next point using Warnsdorff's heuristic. // Returns false if it is not possible to pick // next point. Cell nextMove( int a[], Cell cell) { int min_deg_idx = - 1 , c, min_deg = (N + 1 ), nx, ny; // Try all N adjacent of (*x, *y) starting // from a random adjacent. Find the adjacent // with minimum degree. int start = ThreadLocalRandom.current().nextInt( 1000 ) % N; for ( int count = 0 ; count < N; ++count) { int i = (start + count) % N; nx = cell.x + cx[i]; ny = cell.y + cy[i]; if ((isempty(a, nx, ny)) && (c = getDegree(a, nx, ny)) < min_deg) { min_deg_idx = i; min_deg = c; } } // IF we could not find a next cell if (min_deg_idx == - 1 ) return null ; // Store coordinates of next point nx = cell.x + cx[min_deg_idx]; ny = cell.y + cy[min_deg_idx]; // Mark next move a[ny * N + nx] = a[(cell.y) * N + (cell.x)] + 1 ; // Update next point cell.x = nx; cell.y = ny; return cell; } /* displays the chessboard with all the legal knight's moves */ void print( int a[]) { for ( int i = 0 ; i < N; ++i) { for ( int j = 0 ; j < N; ++j) System.out.printf( "%d\t" , a[j * N + i]); System.out.printf( "\n" ); } } /* checks its neighbouring squares */ /* If the knight ends on a square that is one knight's move from the beginning square, then tour is closed */ boolean neighbour( int x, int y, int xx, int yy) { for ( int i = 0 ; i < N; ++i) if (((x + cx[i]) == xx) && ((y + cy[i]) == yy)) return true ; return false ; } /* Generates the legal moves using warnsdorff's heuristics. Returns false if not possible */ boolean findClosedTour() { // Filling up the chessboard matrix with -1's int a[] = new int [N * N]; for ( int i = 0 ; i < N * N; ++i) a[i] = - 1 ; // initial position int sx = 3 ; int sy = 2 ; // Current points are same as initial points Cell cell = new Cell(sx, sy); a[cell.y * N + cell.x] = 1 ; // Mark first move. // Keep picking next points using // Warnsdorff's heuristic Cell ret = null ; for ( int i = 0 ; i < N * N - 1 ; ++i) { ret = nextMove(a, cell); if (ret == null ) return false ; } // Check if tour is closed (Can end // at starting point) if (!neighbour(ret.x, ret.y, sx, sy)) return false ; print(a); return true ; } // Driver Code public static void main(String[] args) { // While we don't get a solution while (! new GFG().findClosedTour()) { ; } } } class Cell { int x; int y; public Cell( int x, int y) { this .x = x; this .y = y; } } // This code is contributed by SaeedZarinfam |
Python3
# Python program to for Knight's tour problem using # Warnsdorff's algorithm import random class Cell: def __init__( self , x, y): self .x = x self .y = y N = 8 # Move pattern on basis of the change of # x coordinates and y coordinates respectively cx = [ 1 , 1 , 2 , 2 , - 1 , - 1 , - 2 , - 2 ] cy = [ 2 , - 2 , 1 , - 1 , 2 , - 2 , 1 , - 1 ] # function restricts the knight to remain within # the 8x8 chessboard def limits(x, y): return ((x > = 0 and y > = 0 ) and (x < N and y < N)) # Checks whether a square is valid and empty or not def isempty(a, x, y): return (limits(x, y)) and (a[y * N + x] < 0 ) # Returns the number of empty squares adjacent to (x, y) def getDegree(a, x, y): count = 0 for i in range (N): if isempty(a, (x + cx[i]), (y + cy[i])): count + = 1 return count # Picks next point using Warnsdorff's heuristic. # Returns false if it is not possible to pick # next point. def nextMove(a, cell): min_deg_idx = - 1 c = 0 min_deg = (N + 1 ) nx = 0 ny = 0 # Try all N adjacent of (*x, *y) starting # from a random adjacent. Find the adjacent # with minimum degree. start = random.randint( 0 , 1000 ) % N for count in range ( 0 , N): i = (start + count) % N nx = cell.x + cx[i] ny = cell.y + cy[i] c = getDegree(a, nx, ny) if ((isempty(a, nx, ny)) and c < min_deg): min_deg_idx = i min_deg = c # IF we could not find a next cell if (min_deg_idx = = - 1 ): return None # Store coordinates of next point nx = cell.x + cx[min_deg_idx] ny = cell.y + cy[min_deg_idx] # Mark next move a[ny * N + nx] = a[(cell.y) * N + (cell.x)] + 1 # Update next point cell.x = nx cell.y = ny return cell # displays the chessboard with all the legal knight's moves def printA(a): for i in range (N): for j in range (N): print ( "%d\t" % a[j * N + i], end = "") print () # checks its neighbouring squares # If the knight ends on a square that is one knight's move from the beginning square,then tour is closed def neighbour(x, y, xx, yy): for i in range (N): if ((x + cx[i]) = = xx) and ((y + cy[i]) = = yy): return True return False # Generates the legal moves using warnsdorff's heuristics. Returns false if not possible def findClosedTour(): # Filling up the chessboard matrix with -1's a = [ - 1 ] * N * N # initial position sx = 3 sy = 2 # Current points are same as initial points cell = Cell(sx, sy) a[cell.y * N + cell.x] = 1 # Mark first move. # Keep picking next points using Warnsdorff's heuristic ret = None for i in range (N * N - 1 ): ret = nextMove(a, cell) if ret = = None : return False # Check if tour is closed (Can end at starting point) if not neighbour(ret.x, ret.y, sx, sy): return False printA(a) return True # Driver Code if __name__ = = '__main__' : # While we don't get a solution while not findClosedTour(): pass # This code is contributed by Tapesh(tapeshdua420) |
C#
//C# program for Knight’s tour //problem using Warnsdorff’salgorithm using System; using System.Collections; using System.Collections.Generic; public class GFG{ public static int N = 8; // Move pattern on basis of the change of // x coordinates and y coordinates respectively public int [] cx = new int [] {1, 1, 2, 2, -1, -1, -2, -2}; public int [] cy = new int [] {2, -2, 1, -1, 2, -2, 1, -1}; // function restricts the knight to remain within // the 8x8 chessboard bool limits( int x, int y) { return ((x >= 0 && y >= 0) && (x < N && y < N)); } /* Checks whether a square is valid and empty or not */ bool isempty( int [] a, int x, int y) { return ((limits(x, y)) && (a[y * N + x] < 0)); } /* Returns the number of empty squares adjacent to (x, y) */ int getDegree( int [] a, int x, int y) { int count = 0; for ( int i = 0; i < N; ++i) if (isempty(a, (x + cx[i]), (y + cy[i]))) count++; return count; } // Picks next point using Warnsdorff's heuristic. // Returns false if it is not possible to pick // next point. Cell nextMove( int [] a, Cell cell) { int min_deg_idx = -1, c, min_deg = (N + 1), nx, ny; // Try all N adjacent of (*x, *y) starting // from a random adjacent. Find the adjacent // with minimum degree. Random random = new Random(); int start=random.Next(0, 1000); for ( int count = 0; count < N; ++count) { int i = (start + count) % N; nx = cell.x + cx[i]; ny = cell.y + cy[i]; if ((isempty(a, nx, ny)) && (c = getDegree(a, nx, ny)) < min_deg) { min_deg_idx = i; min_deg = c; } } // IF we could not find a next cell if (min_deg_idx == -1) return null ; // Store coordinates of next point nx = cell.x + cx[min_deg_idx]; ny = cell.y + cy[min_deg_idx]; // Mark next move a[ny * N + nx] = a[(cell.y) * N + (cell.x)] + 1; // Update next point cell.x = nx; cell.y = ny; return cell; } /* displays the chessboard with all the legal knight's moves */ void print( int [] a) { for ( int i = 0; i < N; ++i) { for ( int j = 0; j < N; ++j) Console.Write(a[j * N + i]+ "\t" ); Console.Write( "\n" ); } } /* checks its neighbouring squares */ /* If the knight ends on a square that is one knight's move from the beginning square, then tour is closed */ bool neighbour( int x, int y, int xx, int yy) { for ( int i = 0; i < N; ++i) if (((x + cx[i]) == xx) && ((y + cy[i]) == yy)) return true ; return false ; } /* Generates the legal moves using warnsdorff's heuristics. Returns false if not possible */ bool findClosedTour() { // Filling up the chessboard matrix with -1's int [] a = new int [N * N]; for ( int i = 0; i < N * N; ++i) a[i] = -1; // initial position int sx = 3; int sy = 2; // Current points are same as initial points Cell cell = new Cell(sx, sy); a[cell.y * N + cell.x] = 1; // Mark first move. // Keep picking next points using // Warnsdorff's heuristic Cell ret = null ; for ( int i = 0; i < N * N - 1; ++i) { ret = nextMove(a, cell); if (ret == null ) return false ; } // Check if tour is closed (Can end // at starting point) if (!neighbour(ret.x, ret.y, sx, sy)) return false ; print(a); return true ; } static public void Main (){ // While we don't get a solution while (! new GFG().findClosedTour()) { ; } } } class Cell { public int x; public int y; public Cell( int x, int y) { this .x = x; this .y = y; } } //This code is contributed by shruti456rawal |
Javascript
// JavaScript program to for Knight's tour problem using // Warnsdorff's algorithm class Cell { constructor(x, y) { this .x = x; this .y = y; } } const N = 8; // Move pattern on basis of the change of // x coordinates and y coordinates respectively const cx = [1, 1, 2, 2, -1, -1, -2, -2]; const cy = [2, -2, 1, -1, 2, -2, 1, -1]; // function restricts the knight to remain within // the 8x8 chessboard function limits(x, y) { return ((x >= 0 && y >= 0) && (x < N && y < N)); } // Checks whether a square is valid and empty or not function isempty(a, x, y) { return (limits(x, y)) && (a[y * N + x] < 0); } // Returns the number of empty squares adjacent to (x, y) function getDegree(a, x, y) { let count = 0; for (let i = 0; i < N; i++) { if (isempty(a, (x + cx[i]), (y + cy[i]))) { count += 1; } } return count; } // Picks next point using Warnsdorff's heuristic. // Returns false if it is not possible to pick // next point. function nextMove(a, cell) { var min_deg_idx = -1; var c = 0; var min_deg = (N + 1); var nx = 0; var ny = 0; // Try all N adjacent of (*x, *y) starting // from a random adjacent. Find the adjacent // with minimum degree. var start = Math.floor(Math.random() * 1000) % N; for ( var count = 0; count < N; count++) { i = (start + count) % N; nx = cell.x + cx[i]; ny = cell.y + cy[i]; c = getDegree(a, nx, ny); if ((isempty(a, nx, ny)) && c < min_deg) { min_deg_idx = i; min_deg = c; } } // IF we could not find a next cell if (min_deg_idx == -1) { return null ; } // Store coordinates of next point nx = cell.x + cx[min_deg_idx]; ny = cell.y + cy[min_deg_idx]; // Mark next move a[ny * N + nx] = a[(cell.y) * N + (cell.x)] + 1; // Update next point cell.x = nx; cell.y = ny; return cell; } // checks its neighbouring squares // If the knight ends on a square that is one knight's move from the beginning square,then tour is closed function neighbour(x, y, xx, yy) { for ( var i = 0; i < N; i++) { if (((x + cx[i]) == xx) && ((y + cy[i]) == yy)){ return true } else { return false } } } // Generates the legal moves using warnsdorff's heuristics. Returns false if not possible function findClosedTour() { // Filling up the chessboard matrix with -1's var a = new Array(N * N).fill(-1); // initial position var sx = 3; var sy = 2; // Current points are same as initial points var cell = new Cell(sx, sy); a[cell.y * N + cell.x] = 1; // Mark first move. // Keep picking next points using Warnsdorff's heuristic var ret = null ; for ( var i = 0; i < N * N - 1; i++) { ret = nextMove(a, cell); if (ret == null ) { return false ; } } // Check if tour is closed (Can end at starting point) if (!neighbour(ret.x, ret.y, sx, sy)) { return false ; } console.log(a); return true ; } // Driver Code // While we don't get a solution while (!findClosedTour()){ } // This code is contributed by Tapesh(tapeshdua420) |
Output:
59 14 63 32 1 16 19 34 62 31 60 15 56 33 2 17 13 58 55 64 49 18 35 20 30 61 42 57 54 51 40 3 43 12 53 50 41 48 21 36 26 29 44 47 52 39 4 7 11 46 27 24 9 6 37 22 28 25 10 45 38 23 8 5
Time complexity – O(N^2 * log(N))
Space complexity – O(N^2)
The Hamiltonian path problem is NP-hard in general. In practice, Warnsdorff’s heuristic successfully finds a solution in linear time.
Do you know?
“On an 8 × 8 board, there are exactly 26,534,728,821,064 directed closed tours (i.e. two tours along the same path that travel in opposite directions are counted separately, as are rotations and reflections). The number of undirected closed tours is half this number, since every tour can be traced in reverse!”
This article is contributed by Uddalak Bhaduri. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...