Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Unset bits in the given range

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a non-negative number n and two values l and r. The problem is to unset the bits in the range l to r in the binary representation of n, i.e, to unset bits from the rightmost lth bit to the rightmost rth bit.
Constraint: 1 <= l <= r <= number of bits in the binary representation of n.
Examples: 
 

Input : n = 42, l = 2, r = 5
Output : 32
(42)10 = (101010)2
(32)10 = (100000)2
The bits in the range 2 to 5 in the binary
representation of 42 have been unset.

Input : n = 63, l = 1, r = 4
Output : 48

 

Approach: Following are the steps: 
 

  1. Calculate num = (1 << (sizeof(int) * 8 – 1)) – 1. This will produce the highest positive integer num. All the bits in num will be set.
  2. Toggle bits in the range l to r in num. Refer this post.
  3. Now, perform n = n & num. This will unset the bits in the range l to r in n.
  4. Return n.

Note: The sizeof(int) has been used as input is of int data type. For large inputs you can use long int or long long int datatypes in place of int
 

C++




// C++ implementation to unset bits in the given range
#include<bits/stdc++.h>
using namespace std;
 
// Function to toggle bits in the given range
int toggleBitsFromLToR(int n, int l, int r)
{
    // calculating a number 'num' having 'r' number of bits
    // and bits in the range l to r are the only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // toggle the bits in the range l to r in 'n'
    // and return the number
    return (n ^ num);
}
 
// Function to unset bits in the given range
int unsetBitsInGivenRange(int n, int l, int r)
{
    // 'num' is the highest positive integer number
    // all the bits of 'num' are set
    long num = (1ll << (4 * 8 - 1)) - 1;
 
    // toggle the bits in the range l to r in 'num'
    num = toggleBitsFromLToR(num, l, r);
 
    // unset the bits in the range l to r in 'n'
    // and return the number
    return (n & num);
}
 
// driver program
int main()
{
    int n = 42;
    int l = 2, r = 5;
    cout<< unsetBitsInGivenRange(n, l, r);
    return 0;
}


Java




// Java implementation to unset bits in the given range
import java.io.*;
 
class GFG
{
    // Function to toggle bits in the given range
    static int toggleBitsFromLToR(int n, int l, int r)
    {
        // calculating a number 'num' having 'r' number of bits
        // and bits in the range l to r are the only set bits
        int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
        // toggle the bits in the range l to r in 'n'
        // and return the number
        return (n ^ num);
    }
     
    // Function to unset bits in the given range
    static int unsetBitsInGivenRange(int n, int l, int r)
    {
        // 'num' is the highest positive integer number
        // all the bits of 'num' are set
        int num = (1 << (4 * 8 - 1)) - 1;
  
        // toggle the bits in the range l to r in 'num'
        num = toggleBitsFromLToR(num, l, r);
  
        // unset the bits in the range l to r in 'n'
        // and return the number
        return (n & num);
    }
     
    // driver program
    public static void main (String[] args)
    {
        int n = 42;
        int l = 2, r = 5;
        System.out.println(unsetBitsInGivenRange(n, l, r));
    }
}
 
// Contributed by Pramod Kumar


Python3




# python implementation to unset bits
# in the given range
 
# Function to toggle bits in the
# given range
def toggleBitsFromLToR(n, l, r):
     
    # calculating a number 'num'
    # having 'r' number of bits
    # and bits in the range l to
    # r are the only set bits
    num = (((1 << r) - 1) ^
           ((1 << (l - 1)) - 1))
 
    # toggle the bits in the range
    # l to r in 'n' and return the
    # number
    return (n ^ num)
     
# Function to unset bits in the
# given range
def unsetBitsInGivenRange(n, l, r):
     
    # 'num' is the highest positive
    # integer number all the bits
    # of 'num' are set
    num = (1 << (4 * 8 - 1)) - 1
 
    # toggle the bits in the range
    # l to r in 'num'
    num = toggleBitsFromLToR(num, l, r)
 
    # unset the bits in the range
    # l to r in 'n' and return the
    # number
    return (n & num)
 
# Driver code   
n = 42
l = 2
r = 5
print(unsetBitsInGivenRange(n, l, r))
 
# This code is contributed by Sam007.


C#




// C#  implementation to unset
// bits in the given range
using System;
  
class GFG {
      
    // Function to toggle bits in the given range
    static int toggleBitsFromLToR(int n, int l, int r)
    {
        // calculating a number 'num'
        // having 'r' number of bits
        // and bits in the range l
        // to r are the only set bits
        int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
        // toggle the bits in the
        // range l to r in 'n'
        // and return the number
        return (n ^ num);
    }
      
    // Function to unset bits in the given range
    static int unsetBitsInGivenRange(int n, int l, int r)
    {
        // 'num' is the highest
        // positive integer number
        // all the bits of 'num'
        // are set
        int num = (1 << (2 * 8 - 1)) - 1;
  
        // toggle the bits in
        // the range l to r in 'num'
        num = toggleBitsFromLToR(num, l, r);
  
        // unset the bits in
        // the range l to r in 'n'
        // and return the number
        return (n & num);
    }
      
// Driver Code
static public void Main() {
     
    int n = 42;
    int l = 2, r = 5;
    Console.WriteLine(unsetBitsInGivenRange(n, l, r));
}
}
  
// This Code is  Contributed by akt_mit


PHP




<?php
// PHP implementation to unset
// bits in the given range
 
    // Function to toggle bits
    // in the given range
    function toggleBitsFromLToR($n, $l, $r)
    {
         
        // calculating a number 'num'
        // having 'r' number of bits
        // and bits in the range l to
        // r are the only set bits
        $num = ((1 << $r) - 1) ^
               ((1 << ($l - 1)) - 1);
 
        // toggle the bits in the
        // range l to r in 'n'
        // and return the number
        return ($n ^ $num);
    }
     
    // Function to unset bits
    // in the given range
    function unsetBitsInGivenRange($n,$l,$r)
    {
         
        // 'num' is the highest
        // positive integer number
        // all the bits of 'num' are set
        $num = (1 << (4 * 8 - 1)) - 1;
 
        // toggle the bits in the
        // range l to r in 'num'
        $num = toggleBitsFromLToR($num, $l, $r);
 
        // unset the bits in the
        // range l to r in 'n'
        // and return the number
        return ($n & $num);
    }
     
        // Driver Code
        $n = 42;
        $l = 2;
        $r = 5;
        echo unsetBitsInGivenRange($n, $l, $r);
     
// This code is contributed by Sam007
?>


Javascript




<script>
    // Javascript implementation to unset bits in the given range
     
    // Function to toggle bits in the given range
    function toggleBitsFromLToR(n, l, r)
    {
        // calculating a number 'num'
        // having 'r' number of bits
        // and bits in the range l
        // to r are the only set bits
        let num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
    
        // toggle the bits in the
        // range l to r in 'n'
        // and return the number
        return (n ^ num);
    }
        
    // Function to unset bits in the given range
    function unsetBitsInGivenRange(n, l, r)
    {
        // 'num' is the highest
        // positive integer number
        // all the bits of 'num'
        // are set
        let num = (1 << (2 * 8 - 1)) - 1;
    
        // toggle the bits in
        // the range l to r in 'num'
        num = toggleBitsFromLToR(num, l, r);
    
        // unset the bits in
        // the range l to r in 'n'
        // and return the number
        return (n & num);
    }
     
    let n = 42;
    let l = 2, r = 5;
    document.write(unsetBitsInGivenRange(n, l, r));
     
</script>


Output: 
 

32

Time Complexity : O(1)

Auxiliary Space: O(1)

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 31 May, 2022
Like Article
Save Article
Similar Reads
Related Tutorials