unordered_map reserve() in C++ STL
As we know a Bucket is a slot in the container’s internal hash table to which all the element are assigned based on the hash value of their key . Buckets are numbered from 0 to bucket_count. Now as a Bucket hold variable number of the item . This number is based on the term Load Factor .When the Load Factor(load_factor) reaches a certain threshold, the container increases the number of buckets and rehashes the map.But when we call rehash(n) then it directly sets the number of buckets to n and triggers a rebuild of the entire hash table.But when we call reserve(n) then it create enough Buckets to hold at least n items.If then we add > n items to the map, a rehash may be triggered depending on the load factor. By calling reserve with the size we expected for the unordered_map container we avoided the multiple rehashes that the increases in container size could have produced and optimized the size of the hash table. The C++ function std::unordered_map::reserve() sets the number of buckets in the container (bucket_count) to the most appropriate to contain at least n elements.
Syntax:
unordered_map_name.reserve(N)
Parameters: The function accepts a single mandatory parameter N which specifies the number of elements requested as the minimum capacity.
Return Value: The function does not return anything.
Below programs illustrates the above function:
Program 1:
// C++ program to illustrate the // unordered_map::reserve() #include <bits/stdc++.h> using namespace std; int main() { // declaration unordered_map< int , int > sample1, sample2; // the sample1 size is reserved for // the bucket to contain a minimum of // one elements sample1.reserve(1); // inserts key and element // in sample1 sample1.insert({ 10, 100 }); sample1.insert({ 50, 500 }); // inserts key and element // in sample1 // the sample1 size is reserved for // the bucket to contain a minimum of // three elements sample2.reserve(3); sample2.insert({ 20, 200 }); sample2.insert({ 30, 300 }); sample2.insert({ 30, 150 }); cout << "The size of Sample1 is: " << sample1.size(); cout << "\nKey and Elements of Sample1 are:" ; for ( auto it = sample1.begin(); it != sample1.end(); it++) { cout << "{" << it->first << ", " << it->second << "} " ; } cout << "\n\nThe size of Sample2 is: " << sample2.size(); cout << "\nKey and Elements of Sample2 are:" ; for ( auto it = sample2.begin(); it != sample2.end(); it++) { cout << "{" << it->first << ", " << it->second << "} " ; } return 0; } |
The size of Sample1 is: 2 Key and Elements of Sample1 are:{50, 500} {10, 100} The size of Sample2 is: 2 Key and Elements of Sample2 are:{30, 300} {20, 200}
Program 2:
// C++ program to illustrate the // unordered_map::reserve() #include <bits/stdc++.h> using namespace std; int main() { // declaration unordered_map< char , char > sample1, sample2; // the sample1 size is reserved for // the bucket to contain a minimum of // one elements sample1.reserve(1); // inserts key and element // in sample1 sample1.insert({ 'a' , 'A' }); sample1.insert({ 'g' , 'G' }); // inserts key and element // in sample1 // the sample1 size is reserved for // the bucket to contain a minimum of // three elements sample2.reserve(3); sample2.insert({ 'b' , 'B' }); sample2.insert({ 'c' , 'C' }); sample2.insert({ 'd' , 'D' }); cout << "The size of Sample1 is: " << sample1.size(); cout << "\nKey and Elements of Sample1 are:" ; for ( auto it = sample1.begin(); it != sample1.end(); it++) { cout << "{" << it->first << ", " << it->second << "} " ; } cout << "\n\nThe size of Sample2 is: " << sample2.size(); cout << "\nKey and Elements of Sample2 are:" ; for ( auto it = sample2.begin(); it != sample2.end(); it++) { cout << "{" << it->first << ", " << it->second << "} " ; } return 0; } |
The size of Sample1 is: 2 Key and Elements of Sample1 are:{g, G} {a, A} The size of Sample2 is: 3 Key and Elements of Sample2 are:{d, D} {c, C} {b, B}
Please Login to comment...