Union and Intersection of two Linked List using Merge Sort
Given two Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. The order of elements in output lists doesn’t matter.
Examples:
Input: List1: 10 -> 15 -> 4 -> 20 List2: 8 -> 4 -> 2 -> 10 Output: Intersection List: 4 -> 10 Union List: 2 -> 8 -> 20 -> 4 -> 15 -> 10 Explanation: In this two lists 4 and 10 nodes are common. The union lists contains all the nodes of both the lists. Input: List1: 1 -> 2 -> 3 -> 4 List2: 3 -> 4 -> 8 -> 10 Output: Intersection List: 3 -> 4 Union List: 1 -> 2 -> 3 -> 4 -> 8 -> 10 Explanation: In this two lists 4 and 3 nodes are common. The union lists contains all the nodes of both the lists.
There were three methods discussed in this post with an implementation of Method 1. In this post, we will see an implementation of Method 2 i.e. Using Merge sort.
Implementation: Following are the steps to be followed to get union and intersection lists. 1) Sort both Linked Lists using merge sort. This step takes O(mLogm) time. 2) Linearly scan both sorted lists to get the union and intersection. This step takes O(m + n) time.
Algorithm:
- Sort both Linked Lists using merge sort.
- Linearly scan both sorted lists to get the union and intersection.
- Perform merge like operation on both linked lists, Keep to a pointer which points initially to the first node of both lists.
- Compare both the nodes until and unless both the pointers are not null.
- if equal add it to the intersection list and union list and move to next node of both the pointers
- if not equal then insert the smaller pointer value into union list and move to the next node
- If one of the pointers is null then traverse the other list and all its nodes to union list.
Just like Method 1, this method also assumes that there are distinct elements in the lists.
CPP
// C++ program to find union and intersection of // two unsorted linked lists in O(n Log n) time. #include <bits/stdc++.h> using namespace std; /* Link list node */ struct Node { int data; struct Node* next; }; /* A utility function to insert a node at the beginning of a linked list*/ void push( struct Node** head_ref, int new_data) { /* allocate node */ struct Node* new_node = ( struct Node*) malloc ( sizeof ( struct Node)); /* put in the data */ new_node->data = new_data; /* link the old list of the new node */ new_node->next = (*head_ref); /* move the head to point to the new node */ (*head_ref) = new_node; } /* UTILITY FUNCTIONS */ /* Split the nodes of the given list into front and back halves, and return the two lists using the reference parameters. If the length is odd, the extra node should go in the front list. Uses the fast/slow pointer strategy. */ void FrontBackSplit( struct Node* source, struct Node** frontRef, struct Node** backRef) { struct Node* fast; struct Node* slow; if (source == NULL || source->next == NULL) { /* length < 2 cases */ *frontRef = source; *backRef = NULL; } else { slow = source; fast = source->next; /* Advance 'fast' two nodes, and advance 'slow' one node */ while (fast != NULL) { fast = fast->next; if (fast != NULL) { slow = slow->next; fast = fast->next; } } /* 'slow' is before the midpoint in the list, so split it in two at that point. */ *frontRef = source; *backRef = slow->next; slow->next = NULL; } } /* See https:// www.geeksforgeeks.org/?p=3622 for details of this function */ struct Node* SortedMerge( struct Node* a, struct Node* b) { struct Node* result = NULL; /* Base cases */ if (a == NULL) return (b); else if (b == NULL) return (a); /* Pick either a or b, and recur */ if (a->data <= b->data) { result = a; result->next = SortedMerge(a->next, b); } else { result = b; result->next = SortedMerge(a, b->next); } return (result); } /* sorts the linked list by changing next pointers (not data) */ void mergeSort( struct Node** headRef) { struct Node* head = *headRef; struct Node *a, *b; /* Base case -- length 0 or 1 */ if ((head == NULL) || (head->next == NULL)) return ; /* Split head into 'a' and 'b' sublists */ FrontBackSplit(head, &a, &b); /* Recursively sort the sublists */ mergeSort(&a); mergeSort(&b); /* answer = merge the two sorted lists together */ *headRef = SortedMerge(a, b); } /* Function to get union of two linked lists head1 and head2 */ struct Node* getUnion( struct Node* head1, struct Node* head2) { struct Node* result = NULL; struct Node *t1 = head1, *t2 = head2; // Traverse both lists and store the // element in the resu1tant list while (t1 != NULL && t2 != NULL) { // Move to the next of first list // if its element is smaller if (t1->data < t2->data) { push(&result, t1->data); t1 = t1->next; } // Else move to the next of second list else if (t1->data > t2->data) { push(&result, t2->data); t2 = t2->next; } // If same then move to the next node // in both lists else { push(&result, t2->data); t1 = t1->next; t2 = t2->next; } } /* Print remaining elements of the lists */ while (t1 != NULL) { push(&result, t1->data); t1 = t1->next; } while (t2 != NULL) { push(&result, t2->data); t2 = t2->next; } return result; } /* Function to get intersection of two linked lists head1 and head2 */ struct Node* getIntersection( struct Node* head1, struct Node* head2) { struct Node* result = NULL; struct Node *t1 = head1, *t2 = head2; // Traverse both lists and store the same element // in the resu1tant list while (t1 != NULL && t2 != NULL) { // Move to the next of first // list if smaller if (t1->data < t2->data) t1 = t1->next; // Move to the next of second // list if it is smaller else if (t1->data > t2->data) t2 = t2->next; // If both are same else { // Store current element in the list push(&result, t2->data); // Move to the next node of both lists t1 = t1->next; t2 = t2->next; } } // return the resultant list return result; } /* A utility function to print a linked list*/ void printList( struct Node* node) { while (node != NULL) { printf ( "%d " , node->data); node = node->next; } } /* Driver program to test above function*/ int main() { /* Start with the empty list */ struct Node* head1 = NULL; struct Node* head2 = NULL; struct Node* intersection_list = NULL; struct Node* union_list = NULL; /*create a linked list 11->10->15->4->20 */ push(&head1, 20); push(&head1, 4); push(&head1, 15); push(&head1, 10); push(&head1, 11); /*create a linked list 8->4->2->10 */ push(&head2, 10); push(&head2, 2); push(&head2, 4); push(&head2, 8); /* Sort the above created Linked List */ mergeSort(&head1); mergeSort(&head2); intersection_list = getIntersection(head1, head2); union_list = getUnion(head1, head2); printf ( "First list is \n" ); printList(head1); printf ( "\nSecond list is \n" ); printList(head2); printf ( "\nIntersection list is \n" ); printList(intersection_list); printf ( "\nUnion list is \n" ); printList(union_list); return 0; } |
Java
import java.util.HashMap; import java.util.HashSet; /* Linked list Node*/ class Node { int data; Node next; Node( int d) { data = d; next = null ; } } class LinkedList { //create head of list Node head; /* Utility function to print list */ void printList() { Node temp = head; while (temp != null ) { System.out.print(temp.data + " " ); temp = temp.next; } System.out.println(); } /* Inserts a node at start of linked list */ void push( int new_data) { /* 1 & 2: Allocate the Node & Put in the data*/ Node new_node = new Node(new_data); /* 3. Make next of new Node as head */ new_node.next = head; /* 4. Move the head to point to new Node */ head = new_node; } public void append( int new_data) { if ( this .head == null ) { Node n = new Node(new_data); this .head = n; return ; } Node n1 = this .head; Node n2 = new Node(new_data); while (n1.next != null ) { n1 = n1.next; } n1.next = n2; n2.next = null ; } /* A utility function that returns true if data is present in linked list else return false */ boolean isPresent(Node head, int data) { Node t = head; while (t != null ) { if (t.data == data) return true ; t = t.next; } return false ; } LinkedList getIntersection(Node head1, Node head2) { HashSet<Integer> hset = new HashSet<>(); Node n1 = head1; Node n2 = head2; LinkedList result = new LinkedList(); // loop stores all the elements of list1 in hset while (n1 != null ) { if (hset.contains(n1.data)) { hset.add(n1.data); } else { hset.add(n1.data); } n1 = n1.next; } // For every element of list2 present in hset // loop inserts the element into the result while (n2 != null ) { if (hset.contains(n2.data)) { result.push(n2.data); } n2 = n2.next; } return result; } LinkedList getUnion(Node head1, Node head2) { // HashMap that will store the // elements of the lists with their counts HashMap<Integer, Integer> hmap = new HashMap<>(); Node n1 = head1; Node n2 = head2; LinkedList result = new LinkedList(); // loop inserts the elements and the count of // that element of list1 into the hmap while (n1 != null ) { if (hmap.containsKey(n1.data)) { int val = hmap.get(n1.data); hmap.put(n1.data, val + 1 ); } else { hmap.put(n1.data, 1 ); } n1 = n1.next; } // loop further adds the elements of list2 with // their counts into the hmap while (n2 != null ) { if (hmap.containsKey(n2.data)) { int val = hmap.get(n2.data); hmap.put(n2.data, val + 1 ); } else { hmap.put(n2.data, 1 ); } n2 = n2.next; } // Eventually add all the elements // into the result that are present in the hmap for ( int a : hmap.keySet()) { result.append(a); } return result; } /* Driver program to test above functions */ public static void main(String args[]) { LinkedList llist1 = new LinkedList(); LinkedList llist2 = new LinkedList(); LinkedList union = new LinkedList(); LinkedList intersection = new LinkedList(); /*create a linked list 10->15->4->20 */ llist1.push( 20 ); llist1.push( 4 ); llist1.push( 15 ); llist1.push( 10 ); llist1.push( 11 ); /*create a linked list 8->4->2->10 */ llist2.push( 10 ); llist2.push( 2 ); llist2.push( 4 ); llist2.push( 8 ); intersection = intersection.getIntersection( llist1.head, llist2.head); union = union.getUnion(llist1.head, llist2.head); System.out.println( "\nFirst List is\n" ); llist1.printList(); System.out.println( "\nSecond List is\n" ); llist2.printList(); System.out.println( "\nIntersection List is\n" ); intersection.printList(); System.out.println( "\nUnion List is\n" ); union.printList(); } } // This code is Contributed by Gaurav |
Python3
# Python program to find union and intersection of # two unsored linked lists in O(nlogn) time. class Node: def __init__( self , data): self .data = data self . next = None class Pair: def __init__( self , first, second): self .first = first self .second = second # a utility function to insert a node at the beginning of a linked list def push(head_ref, new_data): # allocate and put in the data new_node = Node(new_data) # link the old list of the new node new_node. next = head_ref # move the head to point to the new node head_ref = new_node return head_ref # function to Split the nodes of the given list into front # and back halves. If the length is odd, the extra node # should go in the front list. # Uses the fast/slow pointer strategy def FrontBackSplit(head): if head is None : return head slow = head fast = head while fast. next is not None and fast. next . next is not None : slow = slow. next fast = fast. next . next return slow def SortedMerge(a, b): result = None if a is None : return b elif b is None : return a # pick either a or b if a.data < = b.data: result = a result. next = SortedMerge(a. next , b) else : result = b result. next = SortedMerge(a, b. next ) return result # sorts the linked list by changing # next pointers(not data) def mergeSort(head): # base case if head is None or head. next is None : return head # split head into a and b sublists middle = FrontBackSplit(head) nextofmiddle = middle. next middle. next = None left = mergeSort(head) right = mergeSort(nextofmiddle) # answer = merge two sored list together return SortedMerge(left, right) # function to get the union of two # linked lists head1 and head2 def getUnion(head1, head2): result = None t1 = head1 t2 = head2 # traverse both lists and store the # elements in the resultant list while t1 is not None and t2 is not None : # move to the next of first list # if its element is smaller if t1.data < t2.data: result = push(result, t1.data) t1 = t1. next # else move to the next of second list elif t1.data > t2.data: result = push(result, t2.data) t2 = t2. next # If same then move to the next node # in both lists else : result = push(result, t2.data) t1 = t1. next t2 = t2. next while t1 is not None : result = push(result, t1.data) t1 = t1. next while t2 is not None : result = push(result, t2.data) t2 = t2. next return result # Function to get intersection of # two linked lists head1 and head2 def getIntersection(head1, head2): result = None t1 = head1 t2 = head2 # Traverse both lists and store the same element # in the resu1tant list while t1 is not None and t2 is not None : # Move to the next of first # list if smaller if t1.data < t2.data: t1 = t1. next # Move to the next of second # list if it is smaller elif t1.data > t2.data: t2 = t2. next # If both are same else : # Store current element in the list result = push(result, t2.data) t1 = t1. next t2 = t2. next return result # A utility function to print a linked list def printList(node): while node is not None : print ( str (node.data), end = " " ) node = node. next # driver program to test above functions head1 = None head2 = None intersection_list = None union_list = None # create a linked list 11->10->15->4->20 head1 = push(head1, 20 ) head1 = push(head1, 4 ) head1 = push(head1, 15 ) head1 = push(head1, 10 ) head1 = push(head1, 11 ) # create a linked list 8->4->2->10 head2 = push(head2, 10 ) head2 = push(head2, 2 ) head2 = push(head2, 4 ) head2 = push(head2, 8 ) # Sort the above created Linked List head1 = mergeSort(head1) head2 = mergeSort(head2) intersection_list = getIntersection(head1, head2) union_list = getUnion(head1, head2) print ( "First list is " ) printList(head1) print ( "\nSecond list is " ) printList(head2) print ( "\nIntersection list is " ) printList(intersection_list) print ( "\nUnion list is " ) printList(union_list) |
Javascript
// JavaScript program to find union and intersection of // two unsored linked lists in O(nlogn) time. class Node{ constructor(data){ this .data = data; this .next = null ; } } class pair{ constructor(first, second){ this .first = first; this .second = second; } } // a utility function to insert a node at the beginning of a linked list function push(head_ref, new_data){ // allocate and put in the data let new_node = new Node(new_data); // link the old list of the new node new_node.next = head_ref; // move the head to point to the new node head_ref = new_node; return head_ref; } // function to Split the nodes of the given list into front // and back halves. If the length is odd, the extra node // should go in the front list. // Uses the fast/slow pointer strategy function FrontBackSplit(head){ if (head == null ) return head; let slow = head; let fast = head; while (fast.next != null && fast.next.next != null ){ slow = slow.next; fast = fast.next.next; } return slow; } function SortedMerge(a, b){ let result = null ; // base case if (a == null ) return b; else if (b == null ) return a; // pick either a or b, and recur if (a.data <= b.data){ result = a; result.next = SortedMerge(a.next, b); } else { result = b; result.next = SortedMerge(a, b.next); } return result; } // sorts the linked list by changing // next pointers(not data) function mergeSort(head){ // base case if (head == null || head.next == null ) return head; // split head into a and b sublists let middle = FrontBackSplit(head); let nextofmiddle = middle.next; middle.next = null ; // recusively sort the variables let left = mergeSort(head); let right = mergeSort(nextofmiddle); // answer = merge two sored list together return SortedMerge(left, right); } // function to get the union of two // linked lists head1 and head2 function getUnion(head1, head2){ let result = null ; let t1 = head1; let t2 = head2; // traverse both lists and store the // elements in the resultant list while (t1 != null && t2 != null ){ // move to the next of first list // if its element is smaller if (t1.data < t2.data){ result = push(result, t1.data); t1 = t1.next; } // else move to the next of second list else if (t1.data > t2.data){ result = push(result, t2.data); t2 = t2.next; } // If same then move to the next node // in both lists else { result = push(result, t2.data); t1 = t1.next; t2 = t2.next; } } /* Print remaining elements of the lists */ while (t1 != null ) { result = push(result, t1.data); t1 = t1.next; } while (t2 != null ) { result = push(result, t2.data); t2 = t2.next; } return result; } /* Function to get intersection of two linked lists head1 and head2 */ function getIntersection(head1, head2){ let result = null ; let t1 = head1, t2 = head2; // Traverse both lists and store the same element // in the resu1tant list while (t1 != null && t2 != null ) { // Move to the next of first // list if smaller if (t1.data < t2.data) t1 = t1.next; // Move to the next of second // list if it is smaller else if (t1.data > t2.data) t2 = t2.next; // If both are same else { // Store current element in the list result = push(result, t2.data); // Move to the next node of both lists t1 = t1.next; t2 = t2.next; } } // return the resultant list return result; } /* A utility function to print a linked list*/ function printList(node){ while (node != null ) { console.log(node.data + " " ); node = node.next; } } // driver program to test above functions let head1 = null ; let head2 = null ; let intersection_list = null ; let union_list = null ; // create a linked list 11->10->15->4->20 head1 = push(head1, 20); head1 = push(head1, 4); head1 = push(head1, 15); head1 = push(head1, 10); head1 = push(head1, 11); // create a linked list 8->4->2->10 head2 = push(head2, 10); head2 = push(head2, 2); head2 = push(head2, 4); head2 = push(head2, 8); /* Sort the above created Linked List */ head1 = mergeSort(head1); head2 = mergeSort(head2); intersection_list = getIntersection(head1, head2); union_list = getUnion(head1, head2); console.log( "First list is " ); printList(head1); console.log( "\nSecond list is " ); printList(head2); console.log( "\nIntersection list is " ); printList(intersection_list); console.log( "\nUnion list is " ); printList(union_list); // THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002) |
C#
using System; public class Node { public int data; public Node next; } public class Program { public static void Push( ref Node head_ref, int new_data) { Node new_node = new Node(); new_node.data = new_data; new_node.next = head_ref; head_ref = new_node; } public static void FrontBackSplit(Node source, out Node frontRef, out Node backRef) { Node fast; Node slow; if (source == null || source.next == null ) { frontRef = source; backRef = null ; } else { slow = source; fast = source.next; while (fast != null ) { fast = fast.next; if (fast != null ) { slow = slow.next; fast = fast.next; } } frontRef = source; backRef = slow.next; slow.next = null ; } } public static Node SortedMerge(Node a, Node b) { Node result = null ; if (a == null ) return b; else if (b == null ) return a; if (a.data <= b.data) { result = a; result.next = SortedMerge(a.next, b); } else { result = b; result.next = SortedMerge(a, b.next); } return result; } public static void MergeSort( ref Node headRef) { Node head = headRef; Node a, b; if (head == null || head.next == null ) return ; FrontBackSplit(head, out a, out b); MergeSort( ref a); MergeSort( ref b); headRef = SortedMerge(a, b); } public static Node GetUnion(Node head1, Node head2) { Node result = null ; Node t1 = head1, t2 = head2; while (t1 != null && t2 != null ) { if (t1.data < t2.data) { Push( ref result, t1.data); t1 = t1.next; } else if (t1.data > t2.data) { Push( ref result, t2.data); t2 = t2.next; } else { Push( ref result, t2.data); t1 = t1.next; t2 = t2.next; } } while (t1 != null ) { Push( ref result, t1.data); t1 = t1.next; } while (t2 != null ) { Push( ref result, t2.data); t2 = t2.next; } return result; } public static Node GetIntersection(Node head1, Node head2) { Node result = null ; Node t1 = head1, t2 = head2; while (t1 != null && t2 != null ) { if (t1.data < t2.data) t1 = t1.next; else if (t1.data > t2.data) t2 = t2.next; else { Push( ref result, t2.data); t1 = t1.next; t2 = t2.next; } } return result; } public static void PrintList(Node node) { while (node != null ) { Console.Write(node.data + " " ); node = node.next; } } static void Main() { /* Start with the empty list */ Node head1 = null ; Node head2 = null ; Node intersection_list = null ; Node union_list = null ; /*create a linked list 11->10->15->4->20 */ Push( ref head1, 20); Push( ref head1, 4); Push( ref head1, 15); Push( ref head1, 10); Push( ref head1, 11); /*create a linked list 8->4->2->10 */ Push( ref head2, 10); Push( ref head2, 2); Push( ref head2, 4); Push( ref head2, 8); /* Sort the above created Linked List */ MergeSort( ref head1); MergeSort( ref head2); intersection_list = GetIntersection(head1, head2); union_list = GetUnion(head1, head2); Console.WriteLine( "First list is:" ); PrintList(head1); Console.WriteLine( "\nSecond list is:" ); PrintList(head2); Console.WriteLine( "\nIntersection list is:" ); PrintList(intersection_list); Console.WriteLine( "\nUnion list is:" ); PrintList(union_list); Console.ReadLine(); } } // This code is contributed by Gaurav_Arora |
First list is 4 10 11 15 20 Second list is 2 4 8 10 Intersection list is 10 4 Union list is 20 15 11 10 8 4 2
Complexity Analysis:
- Time complexity: O(m Log m + n Log n). Time required to sort the lists are n log n and m log m and to find union and intersection linear time is required.
- Auxiliary Space: O(m+n). If the output is stored then O(m+n) space is required.
In the next post, Method-3 will be discussed i.e. using hashing. This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...