Skip to content
Related Articles

Related Articles

Trie | (Insert and Search)

Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 10 Nov, 2022
Improve Article
Save Article

What is Trie?

Trie is a type of k-ary search tree used for storing and searching a specific key from a set. Using Trie, search complexities can be brought to optimal limit (key length). 

If we store keys in a binary search tree, a well balanced BST will need time proportional to M * log N, where M is the maximum string length and N is the number of keys in the tree. Using Trie, the key can be searched in O(M) time. However, the penalty is on Trie storage requirements (Please refer to Applications of Trie for more details).

Trie is also known as digital tree or prefix tree. Refer to this article for more detailed information.

Trie data structure

Trie data structure

Structure of Trie node:

Every node of Trie consists of multiple branches. Each branch represents a possible character of keys. Mark the last node of every key as the end of the word node. A Trie node field isEndOfWord is used to distinguish the node as the end of the word node. 

A simple structure to represent nodes of the English alphabet can be as follows.

C++




// Trie node 
struct TrieNode 
     struct TrieNode *children[ALPHABET_SIZE];
     // isEndOfWord is true if the node 
     // represents end of a word 
     bool isEndOfWord; 
}; 


Java




// Trie node 
class TrieNode
{
    TrieNode[] children = new TrieNode[ALPHABET_SIZE];
    // isEndOfWord is true if the node 
    // represents end of a word 
    boolean isEndOfWord;
}


Python3




# Python3 code
 
class TrieNode:
     
    # Trie node class
    def __init__(self):
        self.children = [None for _ in range(26)]
 
        # isEndOfWord is True if node represent the end of the word
        self.isEndOfWord = False


C#




// Trie node
class TrieNode
{
    TrieNode[] children = new TrieNode[ALPHABET_SIZE];
    // isEndOfWord is true if the node
    // represents end of a word
    bool isEndOfWord;
}


Javascript




// TrieNode class in JS
class TrieNode
{
    constructor()
    {
        this.children = new Array(26)
         
        // isEndOfWord is True if node represent the end of the word
        self.isEndOfWord = false;
         
    }
}
 
// This code is contributed by phasing17.


Insert Operation in Trie:

Inserting a key into Trie is a simple approach. 

  • Every character of the input key is inserted as an individual Trie node. Note that the children is an array of pointers (or references) to next-level trie nodes. 
  • The key character acts as an index to the array children
  • If the input key is new or an extension of the existing key, construct non-existing nodes of the key, and mark the end of the word for the last node. 
  • If the input key is a prefix of the existing key in Trie, Simply mark the last node of the key as the end of a word. 

The key length determines Trie depth. 

The following picture explains the construction of trie using keys given in the example below.

Insertion operation

Insertion operation

Search Operation in Trie:

Searching for a key is similar to the insert operation. However, It only compares the characters and moves down. The search can terminate due to the end of a string or lack of key in the trie. 

  • In the former case, if the isEndofWord field of the last node is true, then the key exists in the trie. 
  • In the second case, the search terminates without examining all the characters of the key, since the key is not present in the trie.
Searching in Trie

Searching in Trie

Note: Insert and search costs O(key_length), however, the memory requirements of Trie is O(ALPHABET_SIZE * key_length * N) where N is the number of keys in Trie. There are efficient representations of trie nodes (e.g. compressed trie, ternary search tree, etc.) to minimize the memory requirements of the trie.

Recommended Practice

How to implement a Trie Data Structure?

  • Create a root node with the help of TrieNode() constructor.
  • Store a collection of strings that have to be inserted in the trie in a vector of strings say, arr.
  • Inserting all strings in Trie with the help of the insert() function,
  • Search strings with the help of search() function.

Below is the implementation of the above approach:

C++




// C++ implementation of search and insert
// operations on Trie
#include <bits/stdc++.h>
using namespace std;
 
const int ALPHABET_SIZE = 26;
 
// trie node
struct TrieNode
{
    struct TrieNode *children[ALPHABET_SIZE];
 
    // isEndOfWord is true if the node represents
    // end of a word
    bool isEndOfWord;
};
 
// Returns new trie node (initialized to NULLs)
struct TrieNode *getNode(void)
{
    struct TrieNode *pNode =  new TrieNode;
 
    pNode->isEndOfWord = false;
 
    for (int i = 0; i < ALPHABET_SIZE; i++)
        pNode->children[i] = NULL;
 
    return pNode;
}
 
// If not present, inserts key into trie
// If the key is prefix of trie node, just
// marks leaf node
void insert(struct TrieNode *root, string key)
{
    struct TrieNode *pCrawl = root;
 
    for (int i = 0; i < key.length(); i++)
    {
        int index = key[i] - 'a';
        if (!pCrawl->children[index])
            pCrawl->children[index] = getNode();
 
        pCrawl = pCrawl->children[index];
    }
 
    // mark last node as leaf
    pCrawl->isEndOfWord = true;
}
 
// Returns true if key presents in trie, else
// false
bool search(struct TrieNode *root, string key)
{
    struct TrieNode *pCrawl = root;
 
    for (int i = 0; i < key.length(); i++)
    {
        int index = key[i] - 'a';
        if (!pCrawl->children[index])
            return false;
 
        pCrawl = pCrawl->children[index];
    }
 
    return (pCrawl->isEndOfWord);
}
 
// Driver
int main()
{
    // Input keys (use only 'a' through 'z'
    // and lower case)
    string keys[] = {"the", "a", "there",
                    "answer", "any", "by",
                     "bye", "their" };
    int n = sizeof(keys)/sizeof(keys[0]);
 
    struct TrieNode *root = getNode();
 
    // Construct trie
    for (int i = 0; i < n; i++)
        insert(root, keys[i]);
 
    // Search for different keys
    char output[][32] = {"Not present in trie", "Present in trie"};
 
    // Search for different keys
    cout<<"the"<<" --- "<<output[search(root, "the")]<<endl;
    cout<<"these"<<" --- "<<output[search(root, "these")]<<endl;
    cout<<"their"<<" --- "<<output[search(root, "their")]<<endl;
    cout<<"thaw"<<" --- "<<output[search(root, "thaw")]<<endl;
    return 0;
}


C




// C implementation of search and insert operations
// on Trie
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
 
#define ARRAY_SIZE(a) sizeof(a)/sizeof(a[0])
 
// Alphabet size (# of symbols)
#define ALPHABET_SIZE (26)
 
// Converts key current character into index
// use only 'a' through 'z' and lower case
#define CHAR_TO_INDEX(c) ((int)c - (int)'a')
 
// trie node
struct TrieNode
{
    struct TrieNode *children[ALPHABET_SIZE];
 
    // isEndOfWord is true if the node represents
    // end of a word
    bool isEndOfWord;
};
 
// Returns new trie node (initialized to NULLs)
struct TrieNode *getNode(void)
{
    struct TrieNode *pNode = NULL;
 
    pNode = (struct TrieNode *)malloc(sizeof(struct TrieNode));
 
    if (pNode)
    {
        int i;
 
        pNode->isEndOfWord = false;
 
        for (i = 0; i < ALPHABET_SIZE; i++)
            pNode->children[i] = NULL;
    }
 
    return pNode;
}
 
// If not present, inserts key into trie
// If the key is prefix of trie node, just marks leaf node
void insert(struct TrieNode *root, const char *key)
{
    int level;
    int length = strlen(key);
    int index;
 
    struct TrieNode *pCrawl = root;
 
    for (level = 0; level < length; level++)
    {
        index = CHAR_TO_INDEX(key[level]);
        if (!pCrawl->children[index])
            pCrawl->children[index] = getNode();
 
        pCrawl = pCrawl->children[index];
    }
 
    // mark last node as leaf
    pCrawl->isEndOfWord = true;
}
 
// Returns true if key presents in trie, else false
bool search(struct TrieNode *root, const char *key)
{
    int level;
    int length = strlen(key);
    int index;
    struct TrieNode *pCrawl = root;
 
    for (level = 0; level < length; level++)
    {
        index = CHAR_TO_INDEX(key[level]);
 
        if (!pCrawl->children[index])
            return false;
 
        pCrawl = pCrawl->children[index];
    }
 
    return (pCrawl->isEndOfWord);
}
 
// Driver
int main()
{
    // Input keys (use only 'a' through 'z' and lower case)
    char keys[][8] = {"the", "a", "there", "answer", "any",
                     "by", "bye", "their"};
 
    char output[][32] = {"Not present in trie", "Present in trie"};
 
 
    struct TrieNode *root = getNode();
 
    // Construct trie
    int i;
    for (i = 0; i < ARRAY_SIZE(keys); i++)
        insert(root, keys[i]);
 
    // Search for different keys
    printf("%s --- %s\n", "the", output[search(root, "the")] );
    printf("%s --- %s\n", "these", output[search(root, "these")] );
    printf("%s --- %s\n", "their", output[search(root, "their")] );
    printf("%s --- %s\n", "thaw", output[search(root, "thaw")] );
 
    return 0;
}


Java




// Java implementation of search and insert operations
// on Trie
public class Trie {
     
    // Alphabet size (# of symbols)
    static final int ALPHABET_SIZE = 26;
     
    // trie node
    static class TrieNode
    {
        TrieNode[] children = new TrieNode[ALPHABET_SIZE];
      
        // isEndOfWord is true if the node represents
        // end of a word
        boolean isEndOfWord;
         
        TrieNode(){
            isEndOfWord = false;
            for (int i = 0; i < ALPHABET_SIZE; i++)
                children[i] = null;
        }
    };
      
    static TrieNode root;
     
    // If not present, inserts key into trie
    // If the key is prefix of trie node,
    // just marks leaf node
    static void insert(String key)
    {
        int level;
        int length = key.length();
        int index;
      
        TrieNode pCrawl = root;
      
        for (level = 0; level < length; level++)
        {
            index = key.charAt(level) - 'a';
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
      
            pCrawl = pCrawl.children[index];
        }
      
        // mark last node as leaf
        pCrawl.isEndOfWord = true;
    }
      
    // Returns true if key presents in trie, else false
    static boolean search(String key)
    {
        int level;
        int length = key.length();
        int index;
        TrieNode pCrawl = root;
      
        for (level = 0; level < length; level++)
        {
            index = key.charAt(level) - 'a';
      
            if (pCrawl.children[index] == null)
                return false;
      
            pCrawl = pCrawl.children[index];
        }
      
        return (pCrawl.isEndOfWord);
    }
      
    // Driver
    public static void main(String args[])
    {
        // Input keys (use only 'a' through 'z' and lower case)
        String keys[] = {"the", "a", "there", "answer", "any",
                         "by", "bye", "their"};
      
        String output[] = {"Not present in trie", "Present in trie"};
      
      
        root = new TrieNode();
      
        // Construct trie
        int i;
        for (i = 0; i < keys.length ; i++)
            insert(keys[i]);
      
        // Search for different keys
        if(search("the") == true)
            System.out.println("the --- " + output[1]);
        else System.out.println("the --- " + output[0]);
         
        if(search("these") == true)
            System.out.println("these --- " + output[1]);
        else System.out.println("these --- " + output[0]);
         
        if(search("their") == true)
            System.out.println("their --- " + output[1]);
        else System.out.println("their --- " + output[0]);
         
        if(search("thaw") == true)
            System.out.println("thaw --- " + output[1]);
        else System.out.println("thaw --- " + output[0]);
        
    }
}
// This code is contributed by Sumit Ghosh


Python3




# Python program for insert and search
# operation in a Trie
 
class TrieNode:
     
    # Trie node class
    def __init__(self):
        self.children = [None]*26
 
        # isEndOfWord is True if node represent the end of the word
        self.isEndOfWord = False
 
class Trie:
     
    # Trie data structure class
    def __init__(self):
        self.root = self.getNode()
 
    def getNode(self):
     
        # Returns new trie node (initialized to NULLs)
        return TrieNode()
 
    def _charToIndex(self,ch):
         
        # private helper function
        # Converts key current character into index
        # use only 'a' through 'z' and lower case
         
        return ord(ch)-ord('a')
 
 
    def insert(self,key):
         
        # If not present, inserts key into trie
        # If the key is prefix of trie node,
        # just marks leaf node
        pCrawl = self.root
        length = len(key)
        for level in range(length):
            index = self._charToIndex(key[level])
 
            # if current character is not present
            if not pCrawl.children[index]:
                pCrawl.children[index] = self.getNode()
            pCrawl = pCrawl.children[index]
 
        # mark last node as leaf
        pCrawl.isEndOfWord = True
 
    def search(self, key):
         
        # Search key in the trie
        # Returns true if key presents
        # in trie, else false
        pCrawl = self.root
        length = len(key)
        for level in range(length):
            index = self._charToIndex(key[level])
            if not pCrawl.children[index]:
                return False
            pCrawl = pCrawl.children[index]
 
        return pCrawl.isEndOfWord
 
# driver function
def main():
 
    # Input keys (use only 'a' through 'z' and lower case)
    keys = ["the","a","there","anaswe","any",
            "by","their"]
    output = ["Not present in trie",
              "Present in trie"]
 
    # Trie object
    t = Trie()
 
    # Construct trie
    for key in keys:
        t.insert(key)
 
    # Search for different keys
    print("{} ---- {}".format("the",output[t.search("the")]))
    print("{} ---- {}".format("these",output[t.search("these")]))
    print("{} ---- {}".format("their",output[t.search("their")]))
    print("{} ---- {}".format("thaw",output[t.search("thaw")]))
 
if __name__ == '__main__':
    main()
 
# This code is contributed by Atul Kumar (www.facebook.com/atul.kr.007)


C#




// C# implementation of search and
// insert operations on Trie
using System;
     
public class Trie
{
     
    // Alphabet size (# of symbols)
    static readonly int ALPHABET_SIZE = 26;
     
    // trie node
    class TrieNode
    {
        public TrieNode[] children = new TrieNode[ALPHABET_SIZE];
     
        // isEndOfWord is true if the node represents
        // end of a word
        public bool isEndOfWord;
         
        public TrieNode()
        {
            isEndOfWord = false;
            for (int i = 0; i < ALPHABET_SIZE; i++)
                children[i] = null;
        }
    };
     
    static TrieNode root;
     
    // If not present, inserts key into trie
    // If the key is prefix of trie node,
    // just marks leaf node
    static void insert(String key)
    {
        int level;
        int length = key.Length;
        int index;
     
        TrieNode pCrawl = root;
     
        for (level = 0; level < length; level++)
        {
            index = key[level] - 'a';
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
     
            pCrawl = pCrawl.children[index];
        }
     
        // mark last node as leaf
        pCrawl.isEndOfWord = true;
    }
     
    // Returns true if key
    // presents in trie, else false
    static bool search(String key)
    {
        int level;
        int length = key.Length;
        int index;
        TrieNode pCrawl = root;
     
        for (level = 0; level < length; level++)
        {
            index = key[level] - 'a';
     
            if (pCrawl.children[index] == null)
                return false;
     
            pCrawl = pCrawl.children[index];
        }
     
        return (pCrawl.isEndOfWord);
    }
     
    // Driver
    public static void Main()
    {
        // Input keys (use only 'a'
        // through 'z' and lower case)
        String []keys = {"the", "a", "there", "answer",
                        "any", "by", "bye", "their"};
     
        String []output = {"Not present in trie", "Present in trie"};
     
     
        root = new TrieNode();
     
        // Construct trie
        int i;
        for (i = 0; i < keys.Length ; i++)
            insert(keys[i]);
     
        // Search for different keys
        if(search("the") == true)
            Console.WriteLine("the --- " + output[1]);
        else Console.WriteLine("the --- " + output[0]);
         
        if(search("these") == true)
            Console.WriteLine("these --- " + output[1]);
        else Console.WriteLine("these --- " + output[0]);
         
        if(search("their") == true)
            Console.WriteLine("their --- " + output[1]);
        else Console.WriteLine("their --- " + output[0]);
         
        if(search("thaw") == true)
            Console.WriteLine("thaw --- " + output[1]);
        else Console.WriteLine("thaw --- " + output[0]);
         
    }
}
 
/* This code contributed by PrinciRaj1992 */


PHP




<?php
# PHP program for insert and search operation in a Trie
# Trie node class
class TrieNode
{
    public $isEnd = false;
    public $children = [];
}
 
class Trie {
    # Trie data structure class
    public $node = null;
 
    //Initializing trie
    public function __construct()
    {
        $this->node = new TrieNode();
    }
   
    // Inserts a word into the trie.
 
    public function insert($word)
    {
        $count = strlen($word);
        $node = $this->node;
        for ($i = 0; $i < $count; $i++) {
            $char = $word[$i];
            if (array_key_exists($char, $node->children)) {
                $node = $node->children[$char];
                continue;
            }
            $node->children[$char] = new TrieNode();
            $node = $node->children[$char];
        }
        $node->isEnd = true;
    }
   
    // Returns if the word is in the trie.
      
    public function search($word): bool
    {
        $count = strlen($word);
        $node = $this->node;
        for ($i = 0; $i < $count; $i++) {
            $char = $word[$i];
            if (!array_key_exists($char, $node->children)) {
                return false;
            }
            $node = $node->children[$char];
        }
 
        return $node->isEnd;
    }
}
    $keys = array("the","a","there","answer","any","by","their");
 
    # Trie object
    $t = new Trie();
 
    # Constructing trie
    foreach ($keys as $key) {
        $t->insert($key);
    }
   
   # Searching different words
   print ($t->search("the")==1)?("the ---- Present in trie\n")
       🙁"the ---- Not present in trie\n");
   print ($t->search("this")==1)?("this ---- Present in trie\n")
       🙁"this ---- Not present in trie\n");
   print ($t->search("they")==1)?("they ---- Present in trie\n")
       🙁"they ---- Not present in trie\n");
   print ($t->search("thaw")==1)?("thaw ---- Present in trie")
       🙁"thaw ---- Not present in trie");
 
# This code is contributed by Sajal Aggarwal.
 
 
?>


Javascript




<script>
// Javascript implementation of search and insert operations
// on Trie
 
// Alphabet size (# of symbols)
let ALPHABET_SIZE = 26;
 
// trie node
class TrieNode
{
    constructor()
    {
        this.isEndOfWord = false;
        this.children = new Array(ALPHABET_SIZE);
        for (let i = 0; i < ALPHABET_SIZE; i++)
            this.children[i] = null;
    }
}
 
let root;
 
// If not present, inserts key into trie
    // If the key is prefix of trie node,
    // just marks leaf node
function insert(key)
{
    let level;
        let length = key.length;
        let index;
       
        let pCrawl = root;
       
        for (level = 0; level < length; level++)
        {
            index = key[level].charCodeAt(0) - 'a'.charCodeAt(0);
            if (pCrawl.children[index] == null)
                pCrawl.children[index] = new TrieNode();
       
            pCrawl = pCrawl.children[index];
        }
       
        // mark last node as leaf
        pCrawl.isEndOfWord = true;
}
 
// Returns true if key presents in trie, else false
function search(key)
{
    let level;
        let length = key.length;
        let index;
        let pCrawl = root;
       
        for (level = 0; level < length; level++)
        {
            index = key[level].charCodeAt(0) - 'a'.charCodeAt(0);
       
            if (pCrawl.children[index] == null)
                return false;
       
            pCrawl = pCrawl.children[index];
        }
       
        return (pCrawl.isEndOfWord);
}
 
// Driver   
// Input keys (use only 'a' through 'z' and lower case)
let keys = ["the", "a", "there", "answer", "any",
                 "by", "bye", "their"];
 
let output = ["Not present in trie", "Present in trie"];
 
 
root = new TrieNode();
 
// Construct trie
let i;
for (i = 0; i < keys.length ; i++)
    insert(keys[i]);
 
// Search for different keys
if(search("the") == true)
    document.write("the --- " + output[1]+"<br>");
else
    document.write("the --- " + output[0]+"<br>");
 
if(search("these") == true)
    document.write("these --- " + output[1]+"<br>");
else
    document.write("these --- " + output[0]+"<br>");
 
if(search("their") == true)
    document.write("their --- " + output[1]+"<br>");
else
    document.write("their --- " + output[0]+"<br>");
 
if(search("thaw") == true)
    document.write("thaw --- " + output[1]+"<br>");
else
    document.write("thaw --- " + output[0]+"<br>");
 
 
// This code is contributed by patel2127
</script>


Output

the --- Present in trie
these --- Not present in trie
their --- Present in trie
thaw --- Not present in trie

Complexity Analysis of Trie Data Structure:

Operation Time Complexity Auxiliary Space
Insertion O(n) O(n*m)
Searching O(n) O(1)

Related Articles: 

Practice Problems: 

  1. Trie Search and Insert
  2. Trie Delete
  3. Unique rows in a binary matrix
  4. Count of distinct substrings
  5. Word Boggle

Recent Articles on Trie
This article is contributed by Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!