Triangular Numbers
A number is termed as triangular number if we can represent it in the form of triangular grid of points such that the points form an equilateral triangle and each row contains as many points as the row number, i.e., the first row has one point, second row has two points, third row has three points and so on. The starting triangular numbers are 1, 3 (1+2), 6 (1+2+3), 10 (1+2+3+4).
How to check if a number is Triangular?
The idea is based on the fact that n’th triangular number can be written as sum of n natural numbers, that is n*(n+1)/2. The reason for this is simple, base line of triangular grid has n dots, line above base has (n-1) dots and so on.
Method 1 (Simple)
We start with 1 and check if the number is equal to 1. If it is not, we add 2 to make it 3 and recheck with the number. We repeat this procedure until the sum remains less than or equal to the number that is to be checked for being triangular.
Following is the implementations to check if a number is triangular number.
C++
// C++ program to check if a number is a triangular number // using simple approach. #include <iostream> using namespace std; // Returns true if 'num' is triangular, else false bool isTriangular( int num) { // Base case if (num < 0) return false ; // A Triangular number must be sum of first n // natural numbers int sum = 0; for ( int n=1; sum<=num; n++) { sum = sum + n; if (sum==num) return true ; } return false ; } // Driver code int main() { int n = 55; if (isTriangular(n)) cout << "The number is a triangular number" ; else cout << "The number is NOT a triangular number" ; return 0; } |
Java
// Java program to check if a // number is a triangular number // using simple approach class GFG { // Returns true if 'num' is // triangular, else false static boolean isTriangular( int num) { // Base case if (num < 0 ) return false ; // A Triangular number must be // sum of first n natural numbers int sum = 0 ; for ( int n = 1 ; sum <= num; n++) { sum = sum + n; if (sum == num) return true ; } return false ; } // Driver code public static void main (String[] args) { int n = 55 ; if (isTriangular(n)) System.out.print( "The number " + "is a triangular number" ); else System.out.print( "The number" + " is NOT a triangular number" ); } } // This code is contributed // by Anant Agarwal. |
Python3
# Python3 program to check if a number is a # triangular number using simple approach. # Returns True if 'num' is triangular, else False def isTriangular(num): # Base case if (num < 0 ): return False # A Triangular number must be # sum of first n natural numbers sum , n = 0 , 1 while ( sum < = num): sum = sum + n if ( sum = = num): return True n + = 1 return False # Driver code n = 55 if (isTriangular(n)): print ( "The number is a triangular number" ) else : print ( "The number is NOT a triangular number" ) # This code is contributed by Smitha Dinesh Semwal. |
C#
// C# program to check if a number is a // triangular number using simple approach using System; class GFG { // Returns true if 'num' is // triangular, else false static bool isTriangular( int num) { // Base case if (num < 0) return false ; // A Triangular number must be // sum of first n natural numbers int sum = 0; for ( int n = 1; sum <= num; n++) { sum = sum + n; if (sum == num) return true ; } return false ; } // Driver code public static void Main () { int n = 55; if (isTriangular(n)) Console.WriteLine( "The number " + "is a triangular number" ); else Console.WriteLine( "The number" + " is NOT a triangular number" ); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to check if a number is a // triangular number using simple approach. // Returns true if 'num' is triangular, // else false function isTriangular( $num ) { // Base case if ( $num < 0) return false; // A Triangular number must be // sum of first n natural numbers $sum = 0; for ( $n = 1; $sum <= $num ; $n ++) { $sum = $sum + $n ; if ( $sum == $num ) return true; } return false; } // Driver code $n = 55; if (isTriangular( $n )) echo "The number is a triangular number" ; else echo "The number is NOT a triangular number" ; // This code is contributed by Rajput-Ji ?> |
Javascript
<script> // javascript program to check if a number is a triangular number // using simple approach. // Returns true if 'num' is triangular, else false function isTriangular(num) { // Base case if (num < 0) return false ; // A Triangular number must be sum of first n // natural numbers let sum = 0; for (let n = 1; sum <= num; n++) { sum = sum + n; if (sum == num) return true ; } return false ; } // Driver code let n = 55; if (isTriangular(n)) document.write( "The number is a triangular number" ); else document.write( "The number is NOT a triangular number" ); // This code is contributed by aashish1995 </script> |
Output:
The number is a triangular number
Time Complexity: O(N)
Auxiliary Space: O(1)
Method 2 (Using Quadratic Equation Root Formula)
We form a quadratic equation by equating the number to the formula of sum of first ‘n’ natural numbers, and if we get atleast one value of ‘n’ that is a natural number, we say that the number is a triangular number.
Let the input number be 'num'. We consider, n*(n+1) = num as, n2 + n + (-2 * num) = 0
Below is the implementation of above idea.
C++
// C++ program to check if a number is a triangular number // using quadratic equation. #include <bits/stdc++.h> using namespace std; // Returns true if num is triangular bool isTriangular( int num) { if (num < 0) return false ; // Considering the equation n*(n+1)/2 = num // The equation is : a(n^2) + bn + c = 0"; int c = (-2 * num); int b = 1, a = 1; int d = (b * b) - (4 * a * c); if (d < 0) return false ; // Find roots of equation float root1 = ( -b + sqrt (d)) / (2 * a); float root2 = ( -b - sqrt (d)) / (2 * a); // checking if root1 is natural if (root1 > 0 && floor (root1) == root1) return true ; // checking if root2 is natural if (root2 > 0 && floor (root2) == root2) return true ; return false ; } // Driver code int main() { int num = 55; if (isTriangular(num)) cout << "The number is a triangular number" ; else cout << "The number is NOT a triangular number" ; return 0; } |
Java
// Java program to check if a number is a // triangular number using quadratic equation. import java.io.*; class GFG { // Returns true if num is triangular static boolean isTriangular( int num) { if (num < 0 ) return false ; // Considering the equation // n*(n+1)/2 = num // The equation is : // a(n^2) + bn + c = 0"; int c = (- 2 * num); int b = 1 , a = 1 ; int d = (b * b) - ( 4 * a * c); if (d < 0 ) return false ; // Find roots of equation float root1 = ( -b + ( float )Math.sqrt(d)) / ( 2 * a); float root2 = ( -b - ( float )Math.sqrt(d)) / ( 2 * a); // checking if root1 is natural if (root1 > 0 && Math.floor(root1) == root1) return true ; // checking if root2 is natural if (root2 > 0 && Math.floor(root2) == root2) return true ; return false ; } // Driver code public static void main (String[] args) { int num = 55 ; if (isTriangular(num)) System.out.println( "The number is" + " a triangular number" ); else System.out.println ( "The number " + "is NOT a triangular number" ); } } //This code is contributed by vt_m. |
Python3
# Python3 program to check if a number is a # triangular number using quadratic equation. import math # Returns True if num is triangular def isTriangular(num): if (num < 0 ): return False # Considering the equation n*(n+1)/2 = num # The equation is : a(n^2) + bn + c = 0 c = ( - 2 * num) b, a = 1 , 1 d = (b * b) - ( 4 * a * c) if (d < 0 ): return False # Find roots of equation root1 = ( - b + math.sqrt(d)) / ( 2 * a) root2 = ( - b - math.sqrt(d)) / ( 2 * a) # checking if root1 is natural if (root1 > 0 and math.floor(root1) = = root1): return True # checking if root2 is natural if (root2 > 0 and math.floor(root2) = = root2): return True return False # Driver code n = 55 if (isTriangular(n)): print ( "The number is a triangular number" ) else : print ( "The number is NOT a triangular number" ) # This code is contributed by Smitha Dinesh Semwal |
C#
// C# program to check if a number is a triangular // number using quadratic equation. using System; class GFG { // Returns true if num is triangular static bool isTriangular( int num) { if (num < 0) return false ; // Considering the equation n*(n+1)/2 = num // The equation is : a(n^2) + bn + c = 0"; int c = (-2 * num); int b = 1, a = 1; int d = (b * b) - (4 * a * c); if (d < 0) return false ; // Find roots of equation float root1 = ( -b + ( float )Math.Sqrt(d)) / (2 * a); float root2 = ( -b - ( float )Math.Sqrt(d)) / (2 * a); // checking if root1 is natural if (root1 > 0 && Math.Floor(root1) == root1) return true ; // checking if root2 is natural if (root2 > 0 && Math.Floor(root2) == root2) return true ; return false ; } // Driver code public static void Main () { int num = 55; if (isTriangular(num)) Console.WriteLine( "The number is a " + "triangular number" ); else Console.WriteLine ( "The number is NOT " + "a triangular number" ); } } //This code is contributed by vt_m. |
PHP
<?php // PHP program to check if a number is a // triangular number using quadratic equation. // Returns true if num is triangular function isTriangular( $num ) { if ( $num < 0) return false; // Considering the equation // n*(n+1)/2 = num // The equation is : // a(n^2) + bn + c = 0"; $c = (-2 * $num ); $b = 1; $a = 1; $d = ( $b * $b ) - (4 * $a * $c ); if ( $d < 0) return false; // Find roots of equation $root1 = (- $b + (float)sqrt( $d )) / (2 * $a ); $root2 = (- $b - (float)sqrt( $d )) / (2 * $a ); // checking if root1 is natural if ( $root1 > 0 && floor ( $root1 ) == $root1 ) return true; // checking if root2 is natural if ( $root2 > 0 && floor ( $root2 ) == $root2 ) return true; return false; } // Driver code $num = 55; if (isTriangular( $num )) echo ( "The number is" . " a triangular number" ); else echo ( "The number " . "is NOT a triangular number" ); // This code is contributed // by Code_Mech. ?> |
Javascript
<script> // javascript program to check if a number is a // triangular number using quadratic equation. // Returns true if num is triangular function isTriangular(num) { if (num < 0) return false ; // Considering the equation // n*(n+1)/2 = num // The equation is : // a(n^2) + bn + c = 0"; var c = (-2 * num); var b = 1, a = 1; var d = (b * b) - (4 * a * c); if (d < 0) return false ; // Find roots of equation var root1 = (-b + Math.sqrt(d)) / (2 * a); var root2 = (-b - Math.sqrt(d)) / (2 * a); // checking if root1 is natural if (root1 > 0 && Math.floor(root1) == root1) return true ; // checking if root2 is natural if (root2 > 0 && Math.floor(root2) == root2) return true ; return false ; } // Driver code var num = 55; if (isTriangular(num)) document.write("The number is " + " a triangular number "); else document.write(" The number " + " is NOT a triangular number"); // This code is contributed by Rajput-Ji </script> |
Output:
The number is a triangular number
Time Complexity: O(logn)
Auxiliary Space: O(1), since no extra space has been taken.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...