Skip to content
Related Articles
Open in App
Not now

Related Articles

Transform One String to Another using Minimum Number of Given Operation

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 15 Jun, 2022
Improve Article
Save Article

Given two strings A and B, the task is to convert A to B if possible. The only operation allowed is to put any character from A and insert it at front. Find if it’s possible to convert the string. If yes, then output minimum no. of operations required for transformation.

Examples: 

Input:  A = "ABD", B = "BAD"
Output: 1
Explanation: Pick B and insert it at front.

Input:  A = "EACBD", B = "EABCD"
Output: 3
Explanation: Pick B and insert at front, EACBD => BEACD
             Pick A and insert at front, BEACD => ABECD
             Pick E and insert at front, ABECD => EABCD
Recommended Practice

Checking whether a string can be transformed to another is simple. We need to check whether both strings have same number of characters and same set of characters. This can be easily done by creating a count array for first string and checking if second string has same count of every character. 
How to find minimum number of operations when we are sure that we can transform A to B? The idea is to start matching from last characters of both strings. If last characters match, then our task reduces to n-1 characters. If last characters don’t match, then find the position of B’s mismatching character in A. The difference between two positions indicates that these many characters of A must be moved before current character of A. 

Below is complete algorithm. 
1) Find if A can be transformed to B or not by first creating a count array for all characters of A, then checking with B if B has same count for every character. 
2) Initialize result as 0. 
3) Start traversing from end of both strings. 
……a) If current characters of A and B match, i.e., A[i] == B[j] 
………then do i = i-1 and j = j-1 
    b) If current characters don’t match, then search B[j] in remaining 
………A. While searching, keep incrementing result as these characters 
………must be moved ahead for A to B transformation.

Below are the implementations based on this idea.  

C++




// C++ program to find minimum number of operations required
// to transform one string to other
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number of operations required to
// transform A to B.
int minOps(string& A, string& B)
{
    int m = A.length(), n = B.length();
 
    // This parts checks whether conversion is possible or not
    if (n != m)
        return -1;
    int count[256];
    memset(count, 0, sizeof(count));
    // count characters in A
    for (int i = 0; i < n; i++)
        count[A[i]]++;
    // subtract count for every character in B
    for (int i = 0; i < n; i++)
        count[B[i]]--;
    // Check if all counts become 0
    for (int i = 0; i < 256; i++)
        if (count[i])
            return -1;
 
    // This part calculates the number of operations
    // required
    int res = 0;
    for (int i = n - 1, j = n - 1; i >= 0;) {
        // If there is a mismatch, then keep incrementing
        // result 'res' until B[j] is not found in A[0..i]
        while (i >= 0 && A[i] != B[j]) {
            i--;
            res++;
        }
        // If A[i] and B[j] match
        if (i >= 0) {
            i--;
            j--;
        }
    }
    return res;
}
 
// Driver program
int main()
{
    string A = "EACBD";
    string B = "EABCD";
    cout << "Minimum number of operations required is " << minOps(A, B);
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)


C




// C program to find minimum number of operations required
// to transform one string to other
#include <stdio.h>
#include <string.h>
 
// Function to find minimum number of operations required to
// transform A to B.
int minOps(char A[], char B[])
{
    int m = strlen(A), n = strlen(B);
 
    // This parts checks whether conversion is
    // possible or not
    if (n != m)
        return -1;
    int count[256];
    for (int i = 0; i < 256; i++)
        count[i] = 0;
    // count characters in A
    for (int i = 0; i < n; i++)
        count[A[i]]++;
    // subtract count for every character in B
    for (int i = 0; i < n; i++)
        count[B[i]]--;
    // Check if all counts become 0
    for (int i = 0; i < 256; i++)
        if (count[i])
            return -1;
 
    // This part calculates the number of operations
    // required
    int res = 0;
    for (int i = n - 1, j = n - 1; i >= 0;) {
        // If there is a mismatch, then keep incrementing
        // result 'res' until B[j] is not found in A[0..i]
        while (i >= 0 && A[i] != B[j]) {
            i--;
            res++;
        }
        // If A[i] and B[j] match
        if (i >= 0) {
            i--;
            j--;
        }
    }
    return res;
}
 
// Driver program
int main()
{
    char A[] = "EACBD";
    char B[] = "EABCD";
    printf("Minimum number of operations required is %d", minOps(A, B));
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)


Java




// Java program to find minimum number of operations
// required to transform one string to other
import java.io.*;
import java.util.*;
 
public class GFG {
 
    // Function to find minimum number of operations
    // required to transform A to B.
    public static int minOps(String A, String B)
    {
 
        // This parts checks whether conversion is possible
        // or not
        if (A.length() != B.length())
            return -1;
 
        int i, j, res = 0;
        int count[] = new int[256];
 
        // count characters in A
        // subtract count for every character in B
        for (i = 0; i < A.length(); i++) {
            count[A.charAt(i)]++;
            count[B.charAt(i)]--;
        }
 
        // Check if all counts become 0
        for (i = 0; i < 256; i++)
            if (count[i] != 0)
                return -1;
 
        i = A.length() - 1;
        j = B.length() - 1;
 
        while (i >= 0) {
            // If there is a mismatch, then keep
            // incrementing result 'res' until B[j] is not
            // found in A[0..i]
            if (A.charAt(i) != B.charAt(j))
                res++;
            else
                j--;
            i--;
        }
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String A = "EACBD";
        String B = "EABCD";
 
        System.out.println(
            "Minimum number of operations required is "
            + minOps(A, B));
    }
}
 
// This code is contributed by Aditya Kumar (adityakumar129)


Python3




# Python program to find the minimum number of
# operations required to transform one string to other
 
# Function to find minimum number of operations required
# to transform A to B
def minOps(A, B):
    m = len(A)
    n = len(B)
 
    # This part checks whether conversion is possible or not
    if n != m:
        return -1
 
    count = [0] * 256
 
    for i in range(n):        # count characters in A
        count[ord(B[i])] += 1
    for i in range(n):        # subtract count for every char in B
        count[ord(A[i])] -= 1
    for i in range(256):    # Check if all counts become 0
        if count[i]:
            return -1
 
    # This part calculates the number of operations required
    res = 0
    i = n-1
    j = n-1   
    while i >= 0:
     
        # if there is a mismatch, then keep incrementing
        # result 'res' until B[j] is not found in A[0..i]
        while i>= 0 and A[i] != B[j]:
            i -= 1
            res += 1
 
        # if A[i] and B[j] match
        if i >= 0:
            i -= 1
            j -= 1
 
    return res
 
# Driver program
A = "EACBD"
B = "EABCD"
print ("Minimum number of operations required is " + str(minOps(A,B)))
# This code is contributed by Bhavya Jain


C#




// C# program to find minimum number of
// operations required to transform one
// string to other
using System;
 
class GFG
{
 
// Function to find minimum number of
// operations required to transform
// A to B.
public static int minOps(string A, string B)
{
 
    // This parts checks whether
    // conversion is possible or not
    if (A.Length != B.Length)
    {
        return -1;
    }
 
    int i, j, res = 0;
    int[] count = new int [256];
 
    // count characters in A
 
    // subtract count for every
    // character in B
    for (i = 0; i < A.Length; i++)
    {
        count[A[i]]++;
        count[B[i]]--;
    }
 
    // Check if all counts become 0
    for (i = 0; i < 256; i++)
    {
        if (count[i] != 0)
        {
            return -1;
        }
    }
 
    i = A.Length - 1;
    j = B.Length - 1;
 
    while (i >= 0)
    {
        // If there is a mismatch, then
        // keep incrementing result 'res'
        // until B[j] is not found in A[0..i]
        if (A[i] != B[j])
        {
            res++;
        }
        else
        {
            j--;
        }
        i--;
    }
    return res;
}
 
// Driver code
public static void Main(string[] args)
{
    string A = "EACBD";
    string B = "EABCD";
 
    Console.WriteLine("Minimum number of " +
                      "operations required is " +
                       minOps(A, B));
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP program to find minimum number of
// operations required to transform one string to other
  
// Function to find minimum number of operations required to transform
// A to B.
function minOps($A, $B)
{
    $m = strlen($A);
    $n = strlen($B);
  
     // This parts checks whether conversion is
     // possible or not
    if ($n != $m)
       return -1;
    $count = array_fill(0,256,NULL);
    for ($i=0; $i<$n; $i++)   // count characters in A
       $count[ord($B[$i])]++;
    for ($i=0; $i<$n; $i++)   // subtract count for
       $count[ord($A[$i])]--;         // every character in B
    for ($i=0; $i<256; $i++)   // Check if all counts become 0
      if ($count[$i])
         return -1;
  
    // This part calculates the number of operations required
    $res = 0;
    for ($i=$n-1, $j=$n-1; $i>=0; )
    {
        // If there is a mismatch, then keep incrementing
        // result 'res' until B[j] is not found in A[0..i]
        while ($i>=0 && $A[$i] != $B[$j])
        {
            $i--;
            $res++;
        }
  
        // If A[i] and B[j] match
        if ($i >= 0)
        {
            $i--;
            $j--;
        }
    }
    return $res;
}
  
// Driver program
 
$A = "EACBD";
$B = "EABCD";
echo "Minimum number of operations ".
            "required is ". minOps($A, $B);
return 0;
?>


Javascript




<script>
 
// Javascript program to find minimum number
// of operations required to transform one
// string to other
 
// Function to find minimum number of
// operations required to transform
// A to B.
function minOps(A, B)
{
     
    // This parts checks whether conversion
    // is possible or not
    if (A.length != B.length)
        return -1;
       
    let i, j, res = 0;
    let count = new Array(256);
     
    for(let i = 0; i < 256; i++)
    {
        count[i] = 0;
    }
       
    // count characters in A
       
    // Subtract count for every character in B
    for(i = 0; i < A.length; i++)
    {
        count[A[i].charCodeAt(0)]++;
        count[B[i].charCodeAt(0)]--;
    }
       
    // Check if all counts become 0
    for(i = 0; i < 256; i++)
        if (count[i] != 0)
            return -1;
       
    i = A.length - 1;
    j = B.length - 1;
 
    while(i >= 0)
    {
         
        // If there is a mismatch, then
        // keep incrementing result 'res'
        // until B[j] is not found in A[0..i]
        if (A[i] != B[j])
            res++;
        else
            j--;
             
        i--;        
    }
    return res;    
}
 
// Driver code
let A = "EACBD";
let B = "EABCD";
 
document.write("Minimum number of " +
               "operations required is " +
               minOps(A, B));
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

Minimum number of operations required is 3

Time Complexity: O(n), please note that i is always decremented (in while loop and in if), and the for loop starts from n-1 and runs while i >= 0.

Auxiliary Space: O(1).

Thanks to Gaurav Ahirwar for above solution.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!