Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Total ways of choosing X men and Y women from a total of M men and W women

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given four integers X, Y, M, and W. The task is to find the number of ways to choose X men and Y women from total M men and W women.

Examples: 

Input: X = 1, Y = 2, M = 1, W = 3 
Output:
Way 1: Choose the only man and 1st and 2nd women. 
Way 2: Choose the only man and 2nd and 3rd women. 
Way 3: Choose the only man and 1st and 3rd women.

Input: X = 4, Y = 3, M = 6, W = 5 
Output: 150 

Approach: The total number of ways of choosing X men from a total of M men is MCX and the total number of ways of choosing Y women from W women is WCY. Hence, the total number of combined ways will be MCX * WCY.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// value of ncr effectively
int ncr(int n, int r)
{
 
    // Initialize the answer
    int ans = 1;
 
    for (int i = 1; i <= r; i += 1) {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans /= i;
    }
    return ans;
}
 
// Function to return the count of required ways
int totalWays(int X, int Y, int M, int W)
{
    return (ncr(M, X) * ncr(W, Y));
}
 
int main()
{
    int X = 4, Y = 3, M = 6, W = 5;
 
    cout << totalWays(X, Y, M, W);
 
    return 0;
}


Java




// JAVA implementation of the approach
import java.io.*;
 
class GFG
{
         
    // Function to return the
    // value of ncr effectively
    static int ncr(int n, int r)
    {
     
        // Initialize the answer
        int ans = 1;
     
        for (int i = 1; i <= r; i += 1)
        {
     
            // Divide simultaneously by
            // i to avoid overflow
            ans *= (n - r + i);
            ans /= i;
        }
        return ans;
    }
     
    // Function to return the count of required ways
    static int totalWays(int X, int Y, int M, int W)
    {
        return (ncr(M, X) * ncr(W, Y));
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int X = 4, Y = 3, M = 6, W = 5;
     
        System.out.println(totalWays(X, Y, M, W));
    }
}
 
// This code is contributed by ajit_23


Python3




# Python3 implementation of the approach
 
# Function to return the
# value of ncr effectively
def ncr(n, r):
    # Initialize the answer
    ans = 1
 
    for i in range(1,r+1):
 
        # Divide simultaneously by
        # i to avoid overflow
        ans *= (n - r + i)
        ans //= i
    return ans
 
# Function to return the count of required ways
def totalWays(X, Y, M, W):
 
    return (ncr(M, X) * ncr(W, Y))
 
X = 4
Y = 3
M = 6
W = 5
 
print(totalWays(X, Y, M, W))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the
    // value of ncr effectively
    static int ncr(int n, int r)
    {
     
        // Initialize the answer
        int ans = 1;
     
        for (int i = 1; i <= r; i += 1)
        {
     
            // Divide simultaneously by
            // i to avoid overflow
            ans *= (n - r + i);
            ans /= i;
        }
        return ans;
    }
     
    // Function to return the count of required ways
    static int totalWays(int X, int Y, int M, int W)
    {
        return (ncr(M, X) * ncr(W, Y));
    }
     
    // Driver code
    static public void Main ()
    {
        int X = 4, Y = 3, M = 6, W = 5;
     
        Console.WriteLine(totalWays(X, Y, M, W));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the
// value of ncr effectively
function ncr(n, r)
{
 
    // Initialize the answer
    let ans = 1;
 
    for (let i = 1; i <= r; i += 1) {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans = parseInt(ans / i);
    }
    return ans;
}
 
// Function to return the count of required ways
function totalWays(X, Y, M, W)
{
    return (ncr(M, X) * ncr(W, Y));
}
 
// Driver Code
    let X = 4, Y = 3, M = 6, W = 5;
 
    document.write(totalWays(X, Y, M, W));
 
// This code is contributed by rishavmahato348.
</script>


Output

150

Time Complexity: O(n)

Auxiliary Space: O(1)

Approach:

Here, Another approach to solve this problem is to use the concept of permutations and combinations. We can choose X men from M men in MCX ways, and Y women from W women in WCY ways. To get the total number of ways of choosing X men and Y women, we need to multiply these two values.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the factorial of a number
int factorial(int n)
{
    if (n == 0)
    {
        return 1;
    }
    else
    {
        return n * factorial(n - 1);
    }
}
 
// Function to return the count of required ways
int totalWays(int X, int Y, int M, int W)
{
    int waysToChooseMen = 1;
    for (int i = M; i >= M - X + 1; i--)
    {
        waysToChooseMen *= i;
    }
    waysToChooseMen /= factorial(X);
 
    int waysToChooseWomen = 1;
    for (int i = W; i >= W - Y + 1; i--)
    {
        waysToChooseWomen *= i;
    }
    waysToChooseWomen /= factorial(Y);
 
    return waysToChooseMen * waysToChooseWomen;
}
 
 
int main ()
{
    int X = 4, Y = 3, M = 6, W = 5;
    cout << totalWays(X, Y, M, W);
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to calculate the factorial of a number
    static int factorial(int n) {
        if (n == 0) {
            return 1;
        } else {
            return n * factorial(n - 1);
        }
    }
 
    // Function to return the count of required ways
    static int totalWays(int X, int Y, int M, int W) {
        int waysToChooseMen = 1;
        for (int i = M; i >= M - X + 1; i--) {
            waysToChooseMen *= i;
        }
        waysToChooseMen /= factorial(X);
 
        int waysToChooseWomen = 1;
        for (int i = W; i >= W - Y + 1; i--) {
            waysToChooseWomen *= i;
        }
        waysToChooseWomen /= factorial(Y);
 
        return waysToChooseMen * waysToChooseWomen;
    }
 
    public static void main(String[] args) {
        int X = 4, Y = 3, M = 6, W = 5;
        System.out.println(totalWays(X, Y, M, W));
    }
}


Output

150

Time Complexity:- O(X + Y)
Auxiliary Space:- O(1)


My Personal Notes arrow_drop_up
Last Updated : 19 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials