Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Tiling Problem using Divide and Conquer algorithm

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a n by n board where n is of form 2k where k >= 1 (Basically n is a power of 2 with minimum value as 2). The board has one missing cell (of size 1 x 1). Fill the board using L shaped tiles. A L shaped tile is a 2 x 2 square with one cell of size 1×1 missing.

tiles2

Figure 1: An example input
This problem can be solved using Divide and Conquer. Below is the recursive algorithm.

// n is size of given square, p is location of missing cell
Tile(int n, Point p)

1) Base case: n = 2, A 2 x 2 square with one cell missing is nothing 
   but a tile and can be filled with a single tile.

2) Place a L shaped tile at the center such that it does not cover
   the n/2 * n/2 subsquare that has a missing square. Now all four 
   subsquares of size n/2 x n/2 have a missing cell (a cell that doesn't
   need to be filled).  See figure 2 below.

3) Solve the problem recursively for following four. Let p1, p2, p3 and
   p4 be positions of the 4 missing cells in 4 squares.
   a) Tile(n/2, p1)
   b) Tile(n/2, p2)
   c) Tile(n/2, p3)
   d) Tile(n/2, p3)

The below diagrams show working of above algorithm 

tiles3

Figure 2: After placing the first tile

tiles4

Figure 3: Recurring for the first subsquare.

tiles5

Figure 4: Shows the first step in all four subsquares.
  
 Examples: 

Input :  size = 2 and mark coordinates = (0, 0)
Output : 
-1      1
1       1
Coordinate (0, 0) is marked. So, no tile is there. In the remaining three positions, 
a tile is placed with its number as 1.
Input : size = 4 and mark coordinates = (0, 0)
Output :
-1      3       2       2
3       3       1       2
4       1       1       5
4       4       5       5

Below is the implementation of above idea: 

C++




// C++ program to place tiles
#include <bits/stdc++.h>
using namespace std;
 
int size_of_grid, b, a, cnt = 0;
int arr[128][128];
 
// Placing tile at the given coordinates
void place(int x1, int y1, int x2,
           int y2, int x3, int y3)
{
    cnt++;
    arr[x1][y1] = cnt;
    arr[x2][y2] = cnt;
    arr[x3][y3] = cnt;
}
// Quadrant names
// 1   2
// 3   4
 
// Function based on divide and conquer
int tile(int n, int x, int y)
{
    int r, c;
    if (n == 2) {
        cnt++;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (arr[x + i][y + j] == 0) {
                    arr[x + i][y + j] = cnt;
                }
            }
        }
        return 0;
    }
    // finding hole location
    for (int i = x; i < x + n; i++) {
        for (int j = y; j < y + n; j++) {
            if (arr[i][j] != 0)
                r = i, c = j;
        }
    }
 
    // If missing tile is 1st quadrant
    if (r < x + n / 2 && c < y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2);
 
    // If missing Tile is in 3rd quadrant
    else if (r >= x + n / 2 && c < y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1);
 
    // If missing Tile is in 2nd quadrant
    else if (r < x + n / 2 && c >= y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2 - 1);
 
    // If missing Tile is in 4th quadrant
    else if (r >= x + n / 2 && c >= y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + (n / 2) - 1, x + (n / 2) - 1,
              y + (n / 2) - 1);
 
    // dividing it again in 4 quadrants
    tile(n / 2, x, y + n / 2);
    tile(n / 2, x, y);
    tile(n / 2, x + n / 2, y);
    tile(n / 2, x + n / 2, y + n / 2);
 
    return 0;
}
// Driver program to test above function
int main()
{
    // size of box
    size_of_grid = 8;
    memset(arr, 0, sizeof(arr));
    // Coordinates which will be marked
    a = 0, b = 0;
    // Here tile can not be placed
    arr[a][b] = -1;
    tile(size_of_grid, 0, 0);
    // The grid is
    for (int i = 0; i < size_of_grid; i++) {
        for (int j = 0; j < size_of_grid; j++)
            cout << arr[i][j] << " \t";
        cout << "\n";
    }
}


Java




// Java program to place tiles
public class GFG
{
  static int size_of_grid, b, a, cnt = 0;
  static int[][] arr = new int[128][128];
 
  // Placing tile at the given coordinates
  static void place(int x1, int y1, int x2,
                    int y2, int x3, int y3)
  {
    cnt++;
    arr[x1][y1] = cnt;
    arr[x2][y2] = cnt;
    arr[x3][y3] = cnt;
  }
  // Quadrant names
  // 1   2
  // 3   4
 
  // Function based on divide and conquer
  static int tile(int n, int x, int y)
  {
    int r = 0, c = 0;
    if (n == 2)
    {
      cnt++;
      for (int i = 0; i < n; i++)
      {
        for (int j = 0; j < n; j++)
        {
          if (arr[x + i][y + j] == 0)
          {
            arr[x + i][y + j] = cnt;
          }
        }
      }
      return 0;
    }
 
    // finding hole location
    for (int i = x; i < x + n; i++)
    {
      for (int j = y; j < y + n; j++)
      {
        if (arr[i][j] != 0)
        {
          r = i;
          c = j;
        }
 
      }
    }
 
    // If missing tile is 1st quadrant
    if (r < x + n / 2 && c < y + n / 2)
      place(x + n / 2, y + (n / 2) - 1, x + n / 2,
            y + n / 2, x + n / 2 - 1, y + n / 2);
 
    // If missing Tile is in 3rd quadrant
    else if (r >= x + n / 2 && c < y + n / 2)
      place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
            y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1);
 
    // If missing Tile is in 2nd quadrant
    else if (r < x + n / 2 && c >= y + n / 2)
      place(x + n / 2, y + (n / 2) - 1, x + n / 2,
            y + n / 2, x + n / 2 - 1, y + n / 2 - 1);
 
    // If missing Tile is in 4th quadrant
    else if (r >= x + n / 2 && c >= y + n / 2)
      place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
            y + (n / 2) - 1, x + (n / 2) - 1,
            y + (n / 2) - 1);
 
    // dividing it again in 4 quadrants
    tile(n / 2, x, y + n / 2);
    tile(n / 2, x, y);
    tile(n / 2, x + n / 2, y);
    tile(n / 2, x + n / 2, y + n / 2); 
    return 0;
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    // size of box
    size_of_grid = 8;
 
    // Coordinates which will be marked
    a = 0; b = 0;
 
    // Here tile can not be placed
    arr[a][b] = -1;
    tile(size_of_grid, 0, 0);
 
    // The grid is
    for (int i = 0; i < size_of_grid; i++)
    {
      for (int j = 0; j < size_of_grid; j++)
        System.out.print(arr[i][j] + " ");
      System.out.println();;
    }
  }
}
 
// This code is contributed by divyeshrabadiya07.


C#




// C# program to place tiles
using System;
class GFG
{
     
    static int size_of_grid, b, a, cnt = 0;
    static int[,] arr = new int[128, 128];
      
    // Placing tile at the given coordinates
    static void place(int x1, int y1, int x2,
               int y2, int x3, int y3)
    {
        cnt++;
        arr[x1, y1] = cnt;
        arr[x2, y2] = cnt;
        arr[x3, y3] = cnt;
    }
    // Quadrant names
    // 1   2
    // 3   4
      
    // Function based on divide and conquer
    static int tile(int n, int x, int y)
    {
        int r = 0, c = 0;
        if (n == 2)
        {
            cnt++;
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    if (arr[x + i, y + j] == 0)
                    {
                        arr[x + i, y + j] = cnt;
                    }
                }
            }
            return 0;
        }
       
        // finding hole location
        for (int i = x; i < x + n; i++)
        {
            for (int j = y; j < y + n; j++)
            {
                if (arr[i, j] != 0)
                {
                    r = i;
                    c = j;
                }
                     
            }
        }
      
        // If missing tile is 1st quadrant
        if (r < x + n / 2 && c < y + n / 2)
            place(x + n / 2, y + (n / 2) - 1, x + n / 2,
                  y + n / 2, x + n / 2 - 1, y + n / 2);
      
        // If missing Tile is in 3rd quadrant
        else if (r >= x + n / 2 && c < y + n / 2)
            place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
                  y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1);
      
        // If missing Tile is in 2nd quadrant
        else if (r < x + n / 2 && c >= y + n / 2)
            place(x + n / 2, y + (n / 2) - 1, x + n / 2,
                  y + n / 2, x + n / 2 - 1, y + n / 2 - 1);
      
        // If missing Tile is in 4th quadrant
        else if (r >= x + n / 2 && c >= y + n / 2)
            place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
                  y + (n / 2) - 1, x + (n / 2) - 1,
                  y + (n / 2) - 1);
      
        // dividing it again in 4 quadrants
        tile(n / 2, x, y + n / 2);
        tile(n / 2, x, y);
        tile(n / 2, x + n / 2, y);
        tile(n / 2, x + n / 2, y + n / 2); 
        return 0;
    }
 
  // Driver code
  static void Main()
  {
     
    // size of box
    size_of_grid = 8;
     
    // Coordinates which will be marked
    a = 0; b = 0;
     
    // Here tile can not be placed
    arr[a, b] = -1;
    tile(size_of_grid, 0, 0);
     
    // The grid is
    for (int i = 0; i < size_of_grid; i++)
    {
        for (int j = 0; j < size_of_grid; j++)
            Console.Write(arr[i,j] + " ");
        Console.WriteLine();
    }
  }
}
 
// This code is contributed by divyesh072019.


Python3




# Python3 program to place tiles
size_of_grid = 0
b = 0
a = 0
cnt = 0
arr = [[0 for i in range(128)] for j in range(128)]
 
def place(x1, y1, x2, y2, x3, y3):
    global cnt
    cnt += 1
    arr[x1][y1] = cnt;
    arr[x2][y2] = cnt;
    arr[x3][y3] = cnt;
     
def tile(n, x, y):
    global cnt
    r = 0
    c = 0
    if (n == 2):
        cnt += 1
        for i in range(n):
            for j in range(n):
                if(arr[x + i][y + j] == 0):
                    arr[x + i][y + j] = cnt
        return 0;   
    for i in range(x, x + n):
        for j in range(y, y + n):
            if (arr[i][j] != 0):
                r = i
                c =
    if (r < x + n / 2 and c < y + n / 2):
        place(x + int(n / 2), y + int(n / 2) - 1, x + int(n / 2), y + int(n / 2), x + int(n / 2) - 1, y + int(n / 2))
     
    elif(r >= x + int(n / 2) and c < y + int(n / 2)):
        place(x + int(n / 2) - 1, y + int(n / 2), x + int(n / 2), y + int(n / 2), x + int(n / 2) - 1, y + int(n / 2) - 1)
     
    elif(r < x + int(n / 2) and c >= y + int(n / 2)):
        place(x + int(n / 2), y + int(n / 2) - 1, x + int(n / 2), y + int(n / 2), x + int(n / 2) - 1, y + int(n / 2) - 1)
     
    elif(r >= x + int(n / 2) and c >= y + int(n / 2)):
        place(x + int(n / 2) - 1, y + int(n / 2), x + int(n / 2), y + int(n / 2) - 1, x + int(n / 2) - 1, y + int(n / 2) - 1)
     
    tile(int(n / 2), x, y + int(n / 2));
    tile(int(n / 2), x, y);
    tile(int(n / 2), x + int(n / 2), y);
    tile(int(n / 2), x + int(n / 2), y + int(n / 2));
     
    return 0
 
size_of_grid = 8
a = 0
b = 0
arr[a][b] = -1
tile(size_of_grid, 0, 0)
 
for i in range(size_of_grid):
    for j in range(size_of_grid):
        print(arr[i][j], end=" ")
    print()
 
# This code is contributed by rag2127


Javascript




<script>
 
// Javascript program to place tiles
var size_of_grid, b, a, cnt = 0;
var arr = Array.from(Array(128), ()=>Array(128).fill(0));
 
// Placing tile at the given coordinates
function place(x1, y1, x2, y2, x3, y3)
{
    cnt++;
    arr[x1][y1] = cnt;
    arr[x2][y2] = cnt;
    arr[x3][y3] = cnt;
}
 
// Quadrant names
// 1   2
// 3   4
 
// Function based on divide and conquer
function tile(n, x, y)
{
    var r, c;
    if (n == 2) {
        cnt++;
        for (var i = 0; i < n; i++) {
            for (var j = 0; j < n; j++) {
                if (arr[x + i][y + j] == 0) {
                    arr[x + i][y + j] = cnt;
                }
            }
        }
        return 0;
    }
    // finding hole location
    for (var i = x; i < x + n; i++) {
        for (var j = y; j < y + n; j++) {
            if (arr[i][j] != 0)
                r = i, c = j;
        }
    }
 
    // If missing tile is 1st quadrant
    if (r < x + n / 2 && c < y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2);
 
    // If missing Tile is in 3rd quadrant
    else if (r >= x + n / 2 && c < y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1);
 
    // If missing Tile is in 2nd quadrant
    else if (r < x + n / 2 && c >= y + n / 2)
        place(x + n / 2, y + (n / 2) - 1, x + n / 2,
              y + n / 2, x + n / 2 - 1, y + n / 2 - 1);
 
    // If missing Tile is in 4th quadrant
    else if (r >= x + n / 2 && c >= y + n / 2)
        place(x + (n / 2) - 1, y + (n / 2), x + (n / 2),
              y + (n / 2) - 1, x + (n / 2) - 1,
              y + (n / 2) - 1);
 
    // dividing it again in 4 quadrants
    tile(n / 2, x, y + n / 2);
    tile(n / 2, x, y);
    tile(n / 2, x + n / 2, y);
    tile(n / 2, x + n / 2, y + n / 2);
 
    return 0;
}
 
// Driver program to test above function
// size of box
size_of_grid = 8;
 
// Coordinates which will be marked
a = 0, b = 0;
 
// Here tile can not be placed
arr[a][b] = -1;
tile(size_of_grid, 0, 0);
 
// The grid is
for (var i = 0; i < size_of_grid; i++) {
    for (var j = 0; j < size_of_grid; j++)
        document.write(arr[i][j] + "   ");
    document.write("<br>");
}
 
// This code is contributed by rutvik_56.
</script>


Output

-1     9     8     8     4     4     3     3     
9     9     7     8     4     2     2     3     
10     7     7     11     5     5     2     6     
10     10     11     11     1     5     6     6     
14     14     13     1     1     19     18     18     
14     12     13     13     19     19     17     18     
15     12     12     16     20     17     17     21     
15     15     16     16     20     20     21     21     

Time Complexity: 
Recurrence relation for above recursive algorithm can be written as below. C is a constant. 
T(n) = 4T(n/2) + C 
The above recursion can be solved using Master Method and time complexity is O(n2)

Space Complexity: O(n)

How does this work? 
The working of Divide and Conquer algorithm can be proved using Mathematical Induction. Let the input square be of size 2k x 2k where k >=1. 
Base Case: We know that the problem can be solved for k = 1. We have a 2 x 2 square with one cell missing. 
Induction Hypothesis: Let the problem can be solved for k-1. 
Now we need to prove  that the problem can be solved for k if it can be solved for k-1. For k, we put a L shaped tile in middle and we have four subsquares with dimension 2k-1 x 2k-1 as shown in figure 2 above. So if we can solve 4 subsquares, we can solve the complete square.

References: 
http://www.comp.nus.edu.sg/~sanjay/cs3230/dandc.pdf
This article is contributed by Abhay Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


My Personal Notes arrow_drop_up
Last Updated : 10 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials