Tiling Problem using Divide and Conquer algorithm
Given a n by n board where n is of form 2k where k >= 1 (Basically n is a power of 2 with minimum value as 2). The board has one missing cell (of size 1 x 1). Fill the board using L shaped tiles. A L shaped tile is a 2 x 2 square with one cell of size 1×1 missing.
Figure 1: An example input
This problem can be solved using Divide and Conquer. Below is the recursive algorithm.
// n is size of given square, p is location of missing cell Tile(int n, Point p) 1) Base case: n = 2, A 2 x 2 square with one cell missing is nothing but a tile and can be filled with a single tile. 2) Place a L shaped tile at the center such that it does not cover the n/2 * n/2 subsquare that has a missing square. Now all four subsquares of size n/2 x n/2 have a missing cell (a cell that doesn't need to be filled). See figure 2 below. 3) Solve the problem recursively for following four. Let p1, p2, p3 and p4 be positions of the 4 missing cells in 4 squares. a) Tile(n/2, p1) b) Tile(n/2, p2) c) Tile(n/2, p3) d) Tile(n/2, p3)
The below diagrams show working of above algorithm
Figure 2: After placing the first tile
Figure 3: Recurring for the first subsquare.
Figure 4: Shows the first step in all four subsquares.
Examples:
Input : size = 2 and mark coordinates = (0, 0) Output : -1 1 1 1 Coordinate (0, 0) is marked. So, no tile is there. In the remaining three positions, a tile is placed with its number as 1. Input : size = 4 and mark coordinates = (0, 0) Output : -1 3 2 2 3 3 1 2 4 1 1 5 4 4 5 5
Below is the implementation of above idea:
C++
// C++ program to place tiles #include <bits/stdc++.h> using namespace std; int size_of_grid, b, a, cnt = 0; int arr[128][128]; // Placing tile at the given coordinates void place( int x1, int y1, int x2, int y2, int x3, int y3) { cnt++; arr[x1][y1] = cnt; arr[x2][y2] = cnt; arr[x3][y3] = cnt; } // Quadrant names // 1 2 // 3 4 // Function based on divide and conquer int tile( int n, int x, int y) { int r, c; if (n == 2) { cnt++; for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { if (arr[x + i][y + j] == 0) { arr[x + i][y + j] = cnt; } } } return 0; } // finding hole location for ( int i = x; i < x + n; i++) { for ( int j = y; j < y + n; j++) { if (arr[i][j] != 0) r = i, c = j; } } // If missing tile is 1st quadrant if (r < x + n / 2 && c < y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2); // If missing Tile is in 3rd quadrant else if (r >= x + n / 2 && c < y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1); // If missing Tile is in 2nd quadrant else if (r < x + n / 2 && c >= y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2 - 1); // If missing Tile is in 4th quadrant else if (r >= x + n / 2 && c >= y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + (n / 2) - 1, x + (n / 2) - 1, y + (n / 2) - 1); // dividing it again in 4 quadrants tile(n / 2, x, y + n / 2); tile(n / 2, x, y); tile(n / 2, x + n / 2, y); tile(n / 2, x + n / 2, y + n / 2); return 0; } // Driver program to test above function int main() { // size of box size_of_grid = 8; memset (arr, 0, sizeof (arr)); // Coordinates which will be marked a = 0, b = 0; // Here tile can not be placed arr[a][b] = -1; tile(size_of_grid, 0, 0); // The grid is for ( int i = 0; i < size_of_grid; i++) { for ( int j = 0; j < size_of_grid; j++) cout << arr[i][j] << " \t" ; cout << "\n" ; } } |
Java
// Java program to place tiles public class GFG { static int size_of_grid, b, a, cnt = 0 ; static int [][] arr = new int [ 128 ][ 128 ]; // Placing tile at the given coordinates static void place( int x1, int y1, int x2, int y2, int x3, int y3) { cnt++; arr[x1][y1] = cnt; arr[x2][y2] = cnt; arr[x3][y3] = cnt; } // Quadrant names // 1 2 // 3 4 // Function based on divide and conquer static int tile( int n, int x, int y) { int r = 0 , c = 0 ; if (n == 2 ) { cnt++; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < n; j++) { if (arr[x + i][y + j] == 0 ) { arr[x + i][y + j] = cnt; } } } return 0 ; } // finding hole location for ( int i = x; i < x + n; i++) { for ( int j = y; j < y + n; j++) { if (arr[i][j] != 0 ) { r = i; c = j; } } } // If missing tile is 1st quadrant if (r < x + n / 2 && c < y + n / 2 ) place(x + n / 2 , y + (n / 2 ) - 1 , x + n / 2 , y + n / 2 , x + n / 2 - 1 , y + n / 2 ); // If missing Tile is in 3rd quadrant else if (r >= x + n / 2 && c < y + n / 2 ) place(x + (n / 2 ) - 1 , y + (n / 2 ), x + (n / 2 ), y + n / 2 , x + (n / 2 ) - 1 , y + (n / 2 ) - 1 ); // If missing Tile is in 2nd quadrant else if (r < x + n / 2 && c >= y + n / 2 ) place(x + n / 2 , y + (n / 2 ) - 1 , x + n / 2 , y + n / 2 , x + n / 2 - 1 , y + n / 2 - 1 ); // If missing Tile is in 4th quadrant else if (r >= x + n / 2 && c >= y + n / 2 ) place(x + (n / 2 ) - 1 , y + (n / 2 ), x + (n / 2 ), y + (n / 2 ) - 1 , x + (n / 2 ) - 1 , y + (n / 2 ) - 1 ); // dividing it again in 4 quadrants tile(n / 2 , x, y + n / 2 ); tile(n / 2 , x, y); tile(n / 2 , x + n / 2 , y); tile(n / 2 , x + n / 2 , y + n / 2 ); return 0 ; } // Driver code public static void main(String[] args) { // size of box size_of_grid = 8 ; // Coordinates which will be marked a = 0 ; b = 0 ; // Here tile can not be placed arr[a][b] = - 1 ; tile(size_of_grid, 0 , 0 ); // The grid is for ( int i = 0 ; i < size_of_grid; i++) { for ( int j = 0 ; j < size_of_grid; j++) System.out.print(arr[i][j] + " " ); System.out.println();; } } } // This code is contributed by divyeshrabadiya07. |
C#
// C# program to place tiles using System; class GFG { static int size_of_grid, b, a, cnt = 0; static int [,] arr = new int [128, 128]; // Placing tile at the given coordinates static void place( int x1, int y1, int x2, int y2, int x3, int y3) { cnt++; arr[x1, y1] = cnt; arr[x2, y2] = cnt; arr[x3, y3] = cnt; } // Quadrant names // 1 2 // 3 4 // Function based on divide and conquer static int tile( int n, int x, int y) { int r = 0, c = 0; if (n == 2) { cnt++; for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { if (arr[x + i, y + j] == 0) { arr[x + i, y + j] = cnt; } } } return 0; } // finding hole location for ( int i = x; i < x + n; i++) { for ( int j = y; j < y + n; j++) { if (arr[i, j] != 0) { r = i; c = j; } } } // If missing tile is 1st quadrant if (r < x + n / 2 && c < y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2); // If missing Tile is in 3rd quadrant else if (r >= x + n / 2 && c < y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1); // If missing Tile is in 2nd quadrant else if (r < x + n / 2 && c >= y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2 - 1); // If missing Tile is in 4th quadrant else if (r >= x + n / 2 && c >= y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + (n / 2) - 1, x + (n / 2) - 1, y + (n / 2) - 1); // dividing it again in 4 quadrants tile(n / 2, x, y + n / 2); tile(n / 2, x, y); tile(n / 2, x + n / 2, y); tile(n / 2, x + n / 2, y + n / 2); return 0; } // Driver code static void Main() { // size of box size_of_grid = 8; // Coordinates which will be marked a = 0; b = 0; // Here tile can not be placed arr[a, b] = -1; tile(size_of_grid, 0, 0); // The grid is for ( int i = 0; i < size_of_grid; i++) { for ( int j = 0; j < size_of_grid; j++) Console.Write(arr[i,j] + " " ); Console.WriteLine(); } } } // This code is contributed by divyesh072019. |
Python3
# Python3 program to place tiles size_of_grid = 0 b = 0 a = 0 cnt = 0 arr = [[ 0 for i in range ( 128 )] for j in range ( 128 )] def place(x1, y1, x2, y2, x3, y3): global cnt cnt + = 1 arr[x1][y1] = cnt; arr[x2][y2] = cnt; arr[x3][y3] = cnt; def tile(n, x, y): global cnt r = 0 c = 0 if (n = = 2 ): cnt + = 1 for i in range (n): for j in range (n): if (arr[x + i][y + j] = = 0 ): arr[x + i][y + j] = cnt return 0 ; for i in range (x, x + n): for j in range (y, y + n): if (arr[i][j] ! = 0 ): r = i c = j if (r < x + n / 2 and c < y + n / 2 ): place(x + int (n / 2 ), y + int (n / 2 ) - 1 , x + int (n / 2 ), y + int (n / 2 ), x + int (n / 2 ) - 1 , y + int (n / 2 )) elif (r > = x + int (n / 2 ) and c < y + int (n / 2 )): place(x + int (n / 2 ) - 1 , y + int (n / 2 ), x + int (n / 2 ), y + int (n / 2 ), x + int (n / 2 ) - 1 , y + int (n / 2 ) - 1 ) elif (r < x + int (n / 2 ) and c > = y + int (n / 2 )): place(x + int (n / 2 ), y + int (n / 2 ) - 1 , x + int (n / 2 ), y + int (n / 2 ), x + int (n / 2 ) - 1 , y + int (n / 2 ) - 1 ) elif (r > = x + int (n / 2 ) and c > = y + int (n / 2 )): place(x + int (n / 2 ) - 1 , y + int (n / 2 ), x + int (n / 2 ), y + int (n / 2 ) - 1 , x + int (n / 2 ) - 1 , y + int (n / 2 ) - 1 ) tile( int (n / 2 ), x, y + int (n / 2 )); tile( int (n / 2 ), x, y); tile( int (n / 2 ), x + int (n / 2 ), y); tile( int (n / 2 ), x + int (n / 2 ), y + int (n / 2 )); return 0 size_of_grid = 8 a = 0 b = 0 arr[a][b] = - 1 tile(size_of_grid, 0 , 0 ) for i in range (size_of_grid): for j in range (size_of_grid): print (arr[i][j], end = " " ) print () # This code is contributed by rag2127 |
Javascript
<script> // Javascript program to place tiles var size_of_grid, b, a, cnt = 0; var arr = Array.from(Array(128), ()=>Array(128).fill(0)); // Placing tile at the given coordinates function place(x1, y1, x2, y2, x3, y3) { cnt++; arr[x1][y1] = cnt; arr[x2][y2] = cnt; arr[x3][y3] = cnt; } // Quadrant names // 1 2 // 3 4 // Function based on divide and conquer function tile(n, x, y) { var r, c; if (n == 2) { cnt++; for ( var i = 0; i < n; i++) { for ( var j = 0; j < n; j++) { if (arr[x + i][y + j] == 0) { arr[x + i][y + j] = cnt; } } } return 0; } // finding hole location for ( var i = x; i < x + n; i++) { for ( var j = y; j < y + n; j++) { if (arr[i][j] != 0) r = i, c = j; } } // If missing tile is 1st quadrant if (r < x + n / 2 && c < y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2); // If missing Tile is in 3rd quadrant else if (r >= x + n / 2 && c < y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + n / 2, x + (n / 2) - 1, y + (n / 2) - 1); // If missing Tile is in 2nd quadrant else if (r < x + n / 2 && c >= y + n / 2) place(x + n / 2, y + (n / 2) - 1, x + n / 2, y + n / 2, x + n / 2 - 1, y + n / 2 - 1); // If missing Tile is in 4th quadrant else if (r >= x + n / 2 && c >= y + n / 2) place(x + (n / 2) - 1, y + (n / 2), x + (n / 2), y + (n / 2) - 1, x + (n / 2) - 1, y + (n / 2) - 1); // dividing it again in 4 quadrants tile(n / 2, x, y + n / 2); tile(n / 2, x, y); tile(n / 2, x + n / 2, y); tile(n / 2, x + n / 2, y + n / 2); return 0; } // Driver program to test above function // size of box size_of_grid = 8; // Coordinates which will be marked a = 0, b = 0; // Here tile can not be placed arr[a][b] = -1; tile(size_of_grid, 0, 0); // The grid is for ( var i = 0; i < size_of_grid; i++) { for ( var j = 0; j < size_of_grid; j++) document.write(arr[i][j] + " " ); document.write( "<br>" ); } // This code is contributed by rutvik_56. </script> |
-1 9 8 8 4 4 3 3 9 9 7 8 4 2 2 3 10 7 7 11 5 5 2 6 10 10 11 11 1 5 6 6 14 14 13 1 1 19 18 18 14 12 13 13 19 19 17 18 15 12 12 16 20 17 17 21 15 15 16 16 20 20 21 21
Time Complexity:
Recurrence relation for above recursive algorithm can be written as below. C is a constant.
T(n) = 4T(n/2) + C
The above recursion can be solved using Master Method and time complexity is O(n2)
Space Complexity: O(n)
How does this work?
The working of Divide and Conquer algorithm can be proved using Mathematical Induction. Let the input square be of size 2k x 2k where k >=1.
Base Case: We know that the problem can be solved for k = 1. We have a 2 x 2 square with one cell missing.
Induction Hypothesis: Let the problem can be solved for k-1.
Now we need to prove that the problem can be solved for k if it can be solved for k-1. For k, we put a L shaped tile in middle and we have four subsquares with dimension 2k-1 x 2k-1 as shown in figure 2 above. So if we can solve 4 subsquares, we can solve the complete square.
References:
http://www.comp.nus.edu.sg/~sanjay/cs3230/dandc.pdf
This article is contributed by Abhay Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...