Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Tensorflow.js tf.ready() Function

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Introduction: Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.

The .ready() function is used to return a promise which determines at what time the recently picked backend or else the topmost priority one has been initialized. Moreover, we need to await this promise if we are utilizing a backend that possesses asynchronous initialization.

Syntax:

tf.ready()

Parameters: This method does not hold any parameter.

Return Value: It returns promise of void.

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Calling setBackend() method
tf.setBackend('wasm');
  
// Calling ready() method and
// Printing output
await tf.ready().then(() => {
  console.log(tf.backend().blockSize)
});


Output:

48

Example 2:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Calling setBackend() method
tf.setBackend('webgl');
  
// Calling ready() method and
// Printing output
await tf.ready().then(() => {
  console.log(JSON.stringify(tf.getBackend()))
});


Output:

"webgl"

Reference: https://js.tensorflow.org/api/latest/#ready

My Personal Notes arrow_drop_up
Last Updated : 22 Aug, 2021
Like Article
Save Article
Similar Reads
Related Tutorials