Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Tensorflow.js tf.metrics.meanSquaredError() Function

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The Tensorflow tf.metrics.meanSquaredError() function is a Loss or metric function used to  Computes the mean squared error between y_true and y_pred. the y_true is a truth tensor and y_pred is the Prediction Tensor.

Syntax:

tf.metrics.meanSquaredError(tensor1, tensor2);

Parameters: This function accepts two parameters which are illustrated below:

  • tensor1: It is the truth tensor (y_true).
  • tensor2: It is the prediction tensor (y_pred).

Return Value: It returns the mean square error tensor between truth tensor and prediction tensor.

Example 1:

Javascript




// Importing the tensorflow.Js library
// import * as tf from "@tensorflow/tfjs"
 
// Creating the tensor
let truth = tf.tensor1d([6, 4]);
let prediction = tf.tensor1d([-3, -4]);
 
// Calculating mean squared Error
// between truth and prediction tensor
const mse = tf.metrics.meanSquaredError(truth, prediction);
 
// Printing mean square error
mse.print();


Output:

Tensor
    72.5

Example 2:

Javascript




// Importing the tensorflow.Js library
// import * as tf from "@tensorflow/tfjs"
 
// Calculating mean squared Error between
// truth and prediction tensor
let mse = tf.metrics.meanSquaredError(
    tf.tensor1d([0, 1, 2, 3]),
    tf.tensor1d([-8,-9, -10, -11])
);
 
// Printing mean square error
mse.print();


Output:

Tensor
    126

Reference: https://js.tensorflow.org/api/latest/#metrics.meanSquaredError
 

My Personal Notes arrow_drop_up
Last Updated : 22 Jul, 2021
Like Article
Save Article
Similar Reads
Related Tutorials