Skip to content
Related Articles

Related Articles

Tensorflow.js tf.linalg.gramSchmidt() Function

Improve Article
Save Article
  • Last Updated : 02 Jun, 2021
Improve Article
Save Article

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf.linalg.gramSchmidt() function is used to orthogonalize the vectors using the Gram-Schimdt process.

Syntax:

tf.linalg.gramSchmidt( xs ) 

Parameters:

  • xs ( a tf.Tensor1D array or tf.Tensor2D): These are the vectors that are to be orthogonalized.

Return Value: It returns a tf.Tensor1D array or tf.Tensor2D.

Example 1:

Javascript




const tf = require("@tensorflow/tfjs")
  
// Creating a 2-D tensor
const input = tf.tensor2d([
    [3, 7], 
    [4, 6]
]);
  
// Getting the orthogonalized vector
let result = tf.linalg.gramSchmidt(input);
  
result.print();


Output:

Tensor
    [[0.3939193, 0.919145  ],
     [0.919145 , -0.3939194]]

Example 2:

Javascript




const tf = require("@tensorflow/tfjs")
  
// Creating a 2-D tensor
const input = tf.tensor2d([
    [5, 7, 2], 
    [7, 6, 9],
    [1, 2, 3]
]);
  
// Getting the orthogonalized vector
let result = tf.linalg.gramSchmidt(input);
  
result.print();


Output:

Tensor
    [[0.5661386, 0.792594  , 0.2264554],
     [0.1283516, -0.3561312, 0.925579 ],
     [-0.814256, 0.4949402 , 0.3033505]]

Reference: https://js.tensorflow.org/api/latest/#linalg.gramSchmidt

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!