Tensorflow.js tf.leakyRelu() Function
Tensorflow.js is an open-source library which is being developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.
The .leakyRelu() function is used to find the leaky rectified linear of the stated tensor input and is done elements wise.
Syntax:
tf.leakyRelu(x, alpha?)
Parameters:
- x: It is the tensor input, and it can be of type tf.Tensor, or TypedArray, or Array.
- alpha: It is the optional parameter which is of type number. It defines the scaling factor for the negative values and the by default value is 0.2.
Return Value: It returns the tf.Tensor object.
Example 1: In this example, we are defining an input tensor and then printing the leaky rectified linear values. For creating an input tensor we are utilizing the .tensor1d() method and in order to print the output we are using the .print() method.
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Defining tensor input elements const y = tf.tensor1d([4, -4, 38, NaN]); // Calling leakyRelu() method and // printing output y.leakyRelu().print(); |
Output:
Tensor [4, -0.8, 38, NaN]
Example 2: In this example, all the parameters are passed directly to the leakyRelu function.
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Defining tensor input var val = [3.6, 77, 5.78799797, 'a' ]; // Calling tensor1d method const y = tf.tensor1d(val); // Calling leakyRelu() method var res = tf.leakyRelu(y, 1.7) // printing output res.print(); |
Output:
Tensor [3.5999999, 77, 5.7879982, NaN]
Please Login to comment...