Skip to content
Related Articles

Related Articles

Tensorflow.js tf.initializers.glorotUniform() Function

Improve Article
Save Article
  • Last Updated : 30 Aug, 2021
Improve Article
Save Article

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.

The tf.initializers.glorotUniform() function extracts samples from a uniform distribution within [-limit, limit] where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan out is the number of output units in the weight tensor

Syntax:

tf.initializers.glorotUniform(arguments).

Parameters:

  • arguments: It is an object that contains seed (a number) which is the random number generator seed/number.

Returns value: It returns tf.initializers.Initializer.

Example 1:

Javascript




// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing the .initializers.glorotUniform() function
const geek = tf.initializers.glorotUniform(7)
 
// Printing gain value
console.log(geek);
 
// Printing individual values from gain
console.log('\nIndividual values:\n');
console.log(geek.scale);
console.log(geek.mode);
console.log(geek.distribution);


Output:

{
  "scale": 1,
  "mode": "fanAvg",
  "distribution": "uniform"
}

Individual values:

1
fanAvg
uniform

Example 2:

Javascript




// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
 
// Defining the input value
let inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.glorotUniform() function
let funcValue = tf.initializers.glorotUniform(7)
 
// Creating dense layer 1
let dense_layer_1 = tf.layers.dense({
    units: 5,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
let dense_layer_2 = tf.layers.dense({
    units: 7,
    activation: 'softmax'
});
 
// Output
let outputValue = dense_layer_2.apply(
    dense_layer_1.apply(inputValue)
);
 
// Creation the model.
let model = tf.model({
    inputs: inputValue,
    outputs: outputValue
});
 
// Predicting the output
let finalOutput = model.predict(tf.ones([2, 4]));
finalOutput.print();


Output: 

Tensor
    [[0.0809571, 0.1913243, 0.1932435, 0.1622382,
            0.2768594, 0.046838, 0.0485396],
     [0.0809571, 0.1913243, 0.1932435, 0.1622382, 
            0.2768594, 0.046838, 0.0485396]]

Reference:  https://js.tensorflow.org/api/latest/#initializers.glorotUniform

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!