Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Tensorflow.js tf.divNoNan() Function

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf.divNoNan() function is used to divide two Tensors element-wise and returns 0 if the denominator is 0. It supports broadcasting.

Syntax:

tf.divNoNan (a, b)

Parameters: This function accepts two parameters which are illustrated below:

  • a: The first input tensor as the numerator.
  • b: The second input tensor as the denominator. It should have the same data type as “a”.

Return Value: It returns a Tensor for the result of a/b, where a is the first Tensor and b is the second Tensor. It returns 0 if the denominator is 0.

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing some Tensors
const a = tf.tensor1d([2, 5, 7, 10]);
const b = tf.tensor1d([1, 3, 2, 6]);
const c = tf.tensor1d([0, 0, 0, 0]);
 
// Calling the .divNoNan() function
// over the above Tensors as its parameters
a.divNoNan(b).print(); 
a.divNoNan(c).print();


Output:

Tensor
   [2, 1.6666665, 3.5, 1.6666665]
Tensor
   [0, 0, 0, 0]

Example 2:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Broadcasting div a with b and c
const a = tf.tensor1d([3, 6, 11, 17]);
const b = tf.scalar(2);
const c = tf.scalar(0);
 
// Calling the .divNoNan() function
// over the above Tensors as its parameters
a.divNoNan(b).print(); 
a.divNoNan(c).print();


Output:

Tensor
   [1.5, 3, 5.5, 8.5]
Tensor
   [0, 0, 0, 0]
My Personal Notes arrow_drop_up
Last Updated : 14 May, 2021
Like Article
Save Article
Similar Reads
Related Tutorials