Skip to content
Related Articles

Related Articles

TensorFlow – How to create a numpy ndarray from a tensor

View Discussion
Improve Article
Save Article
  • Last Updated : 01 Aug, 2020

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

To create a numpy array from Tensor, Tensor is converted to a proto tensor first.

Method Used:

  • make_ndarray: This method accepts a TensorProto as input and returns a numpy array with same content as TensorProto.

Example 1:

Python3




# importing the library
import tensorflow as tf
  
# Initializing Input
value = tf.constant([1, 15, 10], dtype = tf.float64)
  
# Printing the Input
print("Value: ", value)
  
# Converting Tensor to TensorProto
proto = tf.make_tensor_proto(value)
  
# Generating numpy array
res = tf.make_ndarray(proto)
  
# Printing the resulting numpy array
print("Result: ", res)


Output:

Value:  tf.Tensor([ 1. 15. 10.], shape=(3, ), dtype=float64)
Result:  [ 1. 15. 10.]

Example 2: This example uses a Tensor with shape (2, 2) so the shape of resulting array will be (2, 2).

Python3




# importing the library
import tensorflow as tf
  
# Initializing Input
value = tf.constant([[1, 2], [3, 4]], dtype = tf.float64)
  
# Printing the Input
print("Value: ", value)
  
# Converting Tensor to TensorProto
proto = tf.make_tensor_proto(value)
  
# Generating numpy array
res = tf.make_ndarray(proto)
  
# Printing the resulting numpy array
print("Result: ", res)


Output:

Value:  tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float64)
Result:  [[1. 2.]
 [3. 4.]]



My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!