GFG App
Open App
Browser
Continue

# sympy.stats.Weibull() in Python

With the help of `sympy.stats.Weibull()` method, we can get the continuous random variable which represents the Weibull distribution.

Syntax : `sympy.stats.Weibull(name, alpha, beta)`
Where, alpha and beta are real number.

Return : Return the continuous random variable.

Example #1 :
In this example we can see that by using `sympy.stats.Weibull()` method, we are able to get the continuous random variable representing Weibull distribution by using this method.

 `# Import sympy and Weibull ` `from` `sympy.stats ``import` `Weibull, density ` `from` `sympy ``import` `Symbol, pprint ` ` `  `z ``=` `Symbol(``"z"``) ` `a ``=` `Symbol(``"a"``, positive ``=` `True``) ` `l ``=` `Symbol(``"l"``, positive ``=` `True``) ` ` `  `# Using sympy.stats.Weibull() method ` `X ``=` `Weibull(``"x"``, a, l) ` `gfg ``=` `density(X)(z) ` ` `  `pprint(gfg) `

Output :

l
/z\
l – 1 -|-|
/z\ \a/
l*|-| *e
\a/
—————–
a

Example #2 :

 `# Import sympy and Weibull ` `from` `sympy.stats ``import` `Weibull, density ` `from` `sympy ``import` `Symbol, pprint ` ` `  `z ``=` `2` `a ``=` `3` `l ``=` `4` ` `  `# Using sympy.stats.Weibull() method ` `X ``=` `Weibull(``"x"``, a, l) ` `gfg ``=` `density(X)(z) ` ` `  `pprint(gfg) `

Output :

-16
—-
81
32*e
——–
81

My Personal Notes arrow_drop_up