Sum of the sequence 2, 22, 222, ………
Find the sum of the following sequence : 2, 22, 222, ……… to n terms.
Examples :
Input : 2 Output: 23.99868 Input : 3 Output: 245.98647
A simple solution is to compute terms one by one and add to the result.
The above problem can be efficiently solved using the following formula:
C++14
// CPP program to find sum of series // 2, 22, 222, .. #include <bits/stdc++.h> using namespace std; // function which return the // the sum of series float sumOfSeries( int n) { return 0.02469 * (10*( pow (10, n) - 1)- (9 * n)); } // driver code int main() { int n = 3; cout << sumOfSeries(n); return 0; } |
Java
// JAVA Code for Sum of the // sequence 2, 22, 222,... import java.util.*; class GFG { // function which return the // the sum of series static double sumOfSeries( int n) { return 0.02469 * (( 10 *Math.pow( 10 , n) - 1 ) - ( 9 * n)); } /* Driver program */ public static void main(String[] args) { int n = 3 ; System.out.println(sumOfSeries(n)); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python3 code to find # sum of series # 2, 22, 222, .. import math # function which return # the sum of series def sumOfSeries( n ): return 0.02469 * (( 10 * math. pow ( 10 , n) - 1 ) - ( 9 * n)) # driver code n = 3 print ( sumOfSeries(n)) # This code is contributed by "Sharad_Bhardwaj". |
C#
// C# Code for Sum of the // sequence 2, 22, 222,... using System; class GFG { // Function which return the // the sum of series static double sumOfSeries( int n) { return 0.02469 * ((10*Math.Pow(10, n) - 1) - (9 * n)); } // Driver Code public static void Main() { int n = 3; Console.Write(sumOfSeries(n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find sum // of series 2, 22, 222, .. // function which return the // the sum of series function sumOfSeries( $n ) { return 0.02469 * ((10*pow(10, $n ) - 1 )- (9 * $n )); } // Driver Code $n = 3; echo (sumOfSeries( $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // JavaScript program for Sum of the // sequence 2, 22, 222,... // function which return the // the sum of series function sumOfSeries(n) { return 0.0246 * ((10*Math.pow(10, n) - 1) - (9 * n)); } // Driver code let n = 3; document.write(sumOfSeries(n)); </script> |
Output
245.986
Time complexity: O(log n) since using inbuilt power function.
Auxiliary Space: O(1)
Please Login to comment...