Sum of the first N terms of XOR Fibonacci series
Given three positive integers A, B, and N where A and B are the first two terms of the XOR Fibonacci series, the task is to find the sum of the first N terms of XOR Fibonacci series which is defined as follows:
F(N) = F(N – 1) ^ F(N – 2)
where ^ is the bitwise XOR and F(0) is 1 and F(1) is 2.
Examples:
Input: A = 0, B = 1, N = 3
Output: 2
Explanation: The first 3 terms of the XOR Fibonacci Series are 0, 1, 1. The sum of the series of the first 3 terms = 0 + 1 + 1 = 2.Input: a = 2, b = 5, N = 8
Output: 35
Naive Approach: The simplest approach is to generate the XOR Fibonacci series up to the first N terms and calculate the sum. Finally, print the sum of obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate the sum of the // first N terms of XOR Fibonacci Series void findSum( int a, int b, int n) { // Base Case if (n == 1) { cout << a; return ; } // Stores the sum of // the first N terms int s = a + b; // Iterate from [0, n-3] for ( int i = 0; i < n - 2; i++) { // Store XOR of last 2 elements int x = a xor b; // Update sum s += x; // Update the first element a = b; // Update the second element b = x; } // Print the final sum cout << s; } // Driver Code int main() { int a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to calculate the sum of the // first N terms of XOR Fibonacci Series static void findSum( int a, int b, int n) { // Base Case if (n == 1 ) { System.out.println(a); return ; } // Stores the sum of // the first N terms int s = a + b; // Iterate from [0, n-3] for ( int i = 0 ; i < n - 2 ; i++) { // Store XOR of last 2 elements int x = a ^ b; // Update sum s += x; // Update the first element a = b; // Update the second element b = x; } // Print the final sum System.out.println(s); } // Driver Code public static void main(String[] args) { int a = 2 , b = 5 , N = 8 ; // Function Call findSum(a, b, N); } } // This code is contributed by jana_sayantan |
Python3
# Python3 program for the above approach # Function to calculate the sum of the # first N terms of XOR Fibonacci Series def findSum(a, b, N): # Base case if N = = 1 : print (a) return # Stores the sum of # the first N terms s = a + b # Iterate from [0, n-3] for i in range ( 0 , N - 2 ): # Store XOR of last 2 elements x = a ^ b # Update sum s + = x # Update the first element a = b # Update the second element b = x # Print the final sum print (s) return # Driver code if __name__ = = '__main__' : a = 2 b = 5 N = 8 # Function call findSum(a, b, N) # This code is contributed by MuskanKalra1 |
C#
// C# program for the above approach using System; class GFG { // Function to calculate the sum of the // first N terms of XOR Fibonacci Series static void findSum( int a, int b, int n) { // Base Case if (n == 1) { Console.WriteLine(a); return ; } // Stores the sum of // the first N terms int s = a + b; // Iterate from [0, n-3] for ( int i = 0; i < n - 2; i++) { // Store XOR of last 2 elements int x = a ^ b; // Update sum s += x; // Update the first element a = b; // Update the second element b = x; } // Print the final sum Console.WriteLine(s); } // Driver Code public static void Main() { int a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); } } // This code is contributed by susmitakundugoaldanga |
Javascript
<script> // Javascript program for the above approach // Function to calculate the sum of the // first N terms of XOR Fibonacci Series function findSum( a ,b, n) { // Base Case if (n == 1) { document.write(a); return ; } // Stores the sum of // the first N terms let s = a + b; // Iterate from [0, n-3] for ( i = 0; i < n - 2; i++) { // Store XOR of last 2 elements let x = a ^ b; // Update sum s += x; // Update the first element a = b; // Update the second element b = x; } // Print the const sum document.write(s); } // Driver Code let a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); // This code is contributed by 29AjayKumar </script> |
35
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is based on the following observation:
Since a ^ a = 0 and it is given that
F(0) = a and F(1) = b
Now, F(2) = F(0) ^ F(1) = a ^ b
And, F(3) = F(1) ^ F(2) = b ^ (a ^ b) = a
F(4) = a ^ b ^ a = b
F(5) = a ^ b
F(6) = a
F(7) = b
F(8) = a ^ b
…
It can be observed that the series repeats itself after every 3 numbers. So, the following three cases arises:
- If N is divisible by 3: Sum of the series is (N / 3) * (a + b + x), where x is XOR of a and b.
- If N % 3 leaves a remainder 1: Sum of the series is (N / 3)*(a + b + x) + a, where x is the Bitwise XOR of a and b.
- If N % 3 leaves a remainder 2: Sum of the series is (N / 3)*(a + b + x) + a + b, where x is the Bitwise XOR of a and b.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate sum of the // first N terms of XOR Fibonacci Series void findSum( int a, int b, int n) { // Store the sum of first n terms int sum = 0; // Store XOR of a and b int x = a ^ b; // Case 1: If n is divisible by 3 if (n % 3 == 0) { sum = (n / 3) * (a + b + x); } // Case 2: If n % 3 leaves remainder 1 else if (n % 3 == 1) { sum = (n / 3) * (a + b + x) + a; } // Case 3: If n % 3 leaves remainder 2 // on division by 3 else { sum = (n / 3) * (a + b + x) + a + b; } // Print the final sum cout << sum; } // Driver Code int main() { int a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to calculate sum of the // first N terms of XOR Fibonacci Series static void findSum( int a, int b, int n) { // Store the sum of first n terms int sum = 0 ; // Store XOR of a and b int x = a ^ b; // Case 1: If n is divisible by 3 if (n % 3 == 0 ) { sum = (n / 3 ) * (a + b + x); } // Case 2: If n % 3 leaves remainder 1 else if (n % 3 == 1 ) { sum = (n / 3 ) * (a + b + x) + a; } // Case 3: If n % 3 leaves remainder 2 // on division by 3 else { sum = (n / 3 ) * (a + b + x) + a + b; } // Print the final sum System.out.print(sum); } // Driver Code public static void main(String[] args) { int a = 2 , b = 5 , N = 8 ; // Function Call findSum(a, b, N); } } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 program for the above approach # Function to calculate sum of the # first N terms of XOR Fibonacci Series def findSum(a, b, N): # Store the sum of first n terms sum = 0 # Store xor of a and b x = a ^ b # Case 1: If n is divisible by 3 if N % 3 = = 0 : sum = (N / / 3 ) * (a + b + x) # Case 2: If n % 3 leaves remainder 1 elif N % 3 = = 1 : sum = (N / / 3 ) * (a + b + x) + a # Case 3: If n % 3 leaves remainder 2 # on division by 3 else : sum = (N / / 3 ) * (a + b + x) + a + b # Print the final sum print ( sum ) return # Driver code if __name__ = = '__main__' : a = 2 b = 5 N = 8 # Function call findSum(a, b, N) # This code is contributed by MuskanKalra1 |
C#
// C# program for the above approach using System; class GFG{ // Function to calculate sum of the // first N terms of XOR Fibonacci Series static void findSum( int a, int b, int n) { // Store the sum of first n terms int sum = 0; // Store XOR of a and b int x = a ^ b; // Case 1: If n is divisible by 3 if (n % 3 == 0) { sum = (n / 3) * (a + b + x); } // Case 2: If n % 3 leaves remainder 1 else if (n % 3 == 1) { sum = (n / 3) * (a + b + x) + a; } // Case 3: If n % 3 leaves remainder 2 // on division by 3 else { sum = (n / 3) * (a + b + x) + a + b; } // Print the final sum Console.Write(sum); } // Driver Code public static void Main(String[] args) { int a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // JavaScript program for the above approach // Function to calculate sum of the // first N terms of XOR Fibonacci Series function findSum(a , b , n) { // Store the sum of first n terms var sum = 0; // Store XOR of a and b var x = a ^ b; // Case 1: If n is divisible by 3 if (n % 3 == 0) { sum = parseInt(n / 3) * (a + b + x); } // Case 2: If n % 3 leaves remainder 1 else if (n % 3 == 1) { sum =parseInt(n / 3)* (a + b + x) + a; } // Case 3: If n % 3 leaves remainder 2 // on division by 3 else { sum = parseInt(n / 3)* (a + b + x) + a + b; } // Print the final sum document.write(sum); } // Driver Code var a = 2, b = 5, N = 8; // Function Call findSum(a, b, N); // This code is contributed by aashish1995 </script> |
35
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...