Sum of subsets nearest to K possible from two given arrays
Given two arrays A[] and B[] consisting of N and M integers respectively, and an integer K, the task is to find the sum nearest to K possible by selecting exactly one element from the array A[] and an element from the array B[], at most twice.
Examples:
Input: A[] = {1, 7}, B[] = {3, 4}, K = 10
Output: 10
Explanation:
Sum obtained by selecting A[0] and A[1] = 3 + 7 = 10, which is closest to the value K(= 10).Input: A[] = {2, 3}, B[] = {4, 5, 30}, K = 18
Output: 17
Approach: The given problem can be solved by using recursion, by finding the sum of elements of the subsets of the array B[] having sum closest to (K – A[i]) for each array element A[i]. Follow the steps below to solve the problem:
- Initialize two variables, say mini as INT_MAX and ans as INT_MAX to store the minimum absolute difference and the value closest to K.
- Define a recursive function, say findClosest(arr, i, currSum) to find the subset-sum of the array closest to K, where i is the index in the array B[] and currSum stores the sum of the subset.
- If the value of i is at least M, then return from the function.
- If the absolute value of (currSum – K) is less than mini, then update the value of mini as abs(currSum – K) and update the value of ans as currSum.
- If the absolute value of (currSum – K) is equal to mini then, update the value of ans as the minimum of ans and currSum.
- Call the recursive function excluding the element B[i] as findClosest(i + 1, currSum).
- Call the recursive function including the element B[i] once as findClosest(i + 1, currSum + B[i]).
- Call the recursive function including the element B[i] twice as findClosest(i + 1, currSum + 2*B[i]).
- Traverse the given array A[] and for every element call the function findClosest(0, A[i]).
- After completing the above steps, print the value of ans as the resultant sum.
Below is the implementation of the above approach:
C++
// C++ program of the above approach #include <bits/stdc++.h> using namespace std; // Stores the sum closest to K int ans = INT_MAX; // Stores the minimum absolute difference int mini = INT_MAX; // Function to choose the elements // from the array B[] void findClosestTarget( int i, int curr, int B[], int M, int K) { // If absolute difference is less // then minimum value if ( abs (curr - K) < mini) { // Update the minimum value mini = abs (curr - K); // Update the value of ans ans = curr; } // If absolute difference between // curr and K is equal to minimum if ( abs (curr - K) == mini) { // Update the value of ans ans = min(ans, curr); } // If i is greater than M - 1 if (i >= M) return ; // Includes the element B[i] once findClosestTarget(i + 1, curr + B[i], B, M, K); // Includes the element B[i] twice findClosestTarget(i + 1, curr + 2 * B[i], B, M, K); // Excludes the element B[i] findClosestTarget(i + 1, curr, B, M, K); } // Function to find a subset sum // whose sum is closest to K int findClosest( int A[], int B[], int N, int M, int K) { // Traverse the array A[] for ( int i = 0; i < N; i++) { // Function Call findClosestTarget(0, A[i], B, M, K); } // Return the ans return ans; } // Driver Code int main() { // Input int A[] = { 2, 3 }; int B[] = { 4, 5, 30 }; int N = sizeof (A) / sizeof (A[0]); int M = sizeof (B) / sizeof (B[0]); int K = 18; // Function Call cout << findClosest(A, B, N, M, K); return 0; } |
Java
// java program for the above approach import java.io.*; import java.lang.*; import java.util.*; public class GFG { // Stores the sum closest to K static int ans = Integer.MAX_VALUE; // Stores the minimum absolute difference static int mini = Integer.MAX_VALUE; // Function to choose the elements // from the array B[] static void findClosestTarget( int i, int curr, int B[], int M, int K) { // If absolute difference is less // then minimum value if (Math.abs(curr - K) < mini) { // Update the minimum value mini = Math.abs(curr - K); // Update the value of ans ans = curr; } // If absolute difference between // curr and K is equal to minimum if (Math.abs(curr - K) == mini) { // Update the value of ans ans = Math.min(ans, curr); } // If i is greater than M - 1 if (i >= M) return ; // Includes the element B[i] once findClosestTarget(i + 1 , curr + B[i], B, M, K); // Includes the element B[i] twice findClosestTarget(i + 1 , curr + 2 * B[i], B, M, K); // Excludes the element B[i] findClosestTarget(i + 1 , curr, B, M, K); } // Function to find a subset sum // whose sum is closest to K static int findClosest( int A[], int B[], int N, int M, int K) { // Traverse the array A[] for ( int i = 0 ; i < N; i++) { // Function Call findClosestTarget( 0 , A[i], B, M, K); } // Return the ans return ans; } // Driver Code public static void main(String[] args) { // Input int A[] = { 2 , 3 }; int B[] = { 4 , 5 , 30 }; int N = A.length; int M = B.length; int K = 18 ; // Function Call System.out.print(findClosest(A, B, N, M, K)); } } // This code is contributed by Kingash. |
Python3
# Python3 program of the above approach # Stores the sum closest to K ans = 10 * * 8 # Stores the minimum absolute difference mini = 10 * * 8 # Function to choose the elements # from the array B[] def findClosestTarget(i, curr, B, M, K): global ans, mini # If absolute difference is less # then minimum value if ( abs (curr - K) < mini): # Update the minimum value mini = abs (curr - K) # Update the value of ans ans = curr # If absolute difference between # curr and K is equal to minimum if ( abs (curr - K) = = mini): # Update the value of ans ans = min (ans, curr) # If i is greater than M - 1 if (i > = M): return # Includes the element B[i] once findClosestTarget(i + 1 , curr + B[i], B, M, K) # Includes the element B[i] twice findClosestTarget(i + 1 , curr + 2 * B[i], B, M, K) # Excludes the element B[i] findClosestTarget(i + 1 , curr, B, M, K) # Function to find a subset sum # whose sum is closest to K def findClosest(A, B, N, M, K): # Traverse the array A[] for i in range (N): # Function Call findClosestTarget( 0 , A[i], B, M, K) # Return the ans return ans # Driver Code if __name__ = = '__main__' : # Input A = [ 2 , 3 ] B = [ 4 , 5 , 30 ] N = len (A) M = len (B) K = 18 # Function Call print (findClosest(A, B, N, M, K)) # This code is contributed by mohit kumar 29. |
C#
// C# program of the above approach using System; class GFG { // Stores the sum closest to K static int ans = Int32.MaxValue; // Stores the minimum absolute difference static int mini = Int32.MaxValue; // Function to choose the elements // from the array B[] static void findClosestTarget( int i, int curr, int [] B, int M, int K) { // If absolute difference is less // then minimum value if (Math.Abs(curr - K) < mini) { // Update the minimum value mini = Math.Abs(curr - K); // Update the value of ans ans = curr; } // If absolute difference between // curr and K is equal to minimum if (Math.Abs(curr - K) == mini) { // Update the value of ans ans = Math.Min(ans, curr); } // If i is greater than M - 1 if (i >= M) return ; // Includes the element B[i] once findClosestTarget(i + 1, curr + B[i], B, M, K); // Includes the element B[i] twice findClosestTarget(i + 1, curr + 2 * B[i], B, M, K); // Excludes the element B[i] findClosestTarget(i + 1, curr, B, M, K); } // Function to find a subset sum // whose sum is closest to K static int findClosest( int [] A, int [] B, int N, int M, int K) { // Traverse the array A[] for ( int i = 0; i < N; i++) { // Function Call findClosestTarget(0, A[i], B, M, K); } // Return the ans return ans; } // Driver Code public static void Main() { // Input int [] A = { 2, 3 }; int [] B = { 4, 5, 30 }; int N = A.Length; int M = B.Length; int K = 18; // Function Call Console.WriteLine(findClosest(A, B, N, M, K)); } } // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Stores the sum closest to K let ans = Number.MAX_SAFE_INTEGER // Stores the minimum absolute difference let mini = Number.MAX_SAFE_INTEGER // Function to choose the elements // from the array B[] function findClosestTarget(i, curr, B, M, K) { // If absolute difference is less // then minimum value if (Math.abs(curr - K) < mini) { // Update the minimum value mini = Math.abs(curr - K); // Update the value of ans ans = curr; } // If absolute difference between // curr and K is equal to minimum if (Math.abs(curr - K) == mini) { // Update the value of ans ans = Math.min(ans, curr); } // If i is greater than M - 1 if (i >= M) return ; // Includes the element B[i] once findClosestTarget(i + 1, curr + B[i], B, M, K); // Includes the element B[i] twice findClosestTarget(i + 1, curr + 2 * B[i], B, M, K); // Excludes the element B[i] findClosestTarget(i + 1, curr, B, M, K); } // Function to find a subset sum // whose sum is closest to K function findClosest(A, B, N, M, K) { // Traverse the array A[] for (let i = 0; i < N; i++) { // Function Call findClosestTarget(0, A[i], B, M, K); } // Return the ans return ans; } // Driver Code // Input let A = [2, 3]; let B = [4, 5, 30]; let N = A.length; let M = B.length; let K = 18; // Function Call document.write(findClosest(A, B, N, M, K)); //This code is contributed by Hritik. </script> |
17
Time Complexity: O(N * 3M)
Auxiliary Space: O(1)
Please Login to comment...