Sum of P terms of an AP if Mth and Nth terms are given
Given Mth and Nth terms of arithmetic progression. The task is to find the sum of its first p terms.
Examples:
Input: m = 6, n = 10, mth = 12, nth = 20, p = 5
Output:30
Input:m = 10, n = 20, mth = 70, nth = 140, p = 4
Output:70
Approach: Let a is the first term and d is the common difference of the given AP. Therefore
mth term = a + (m-1)d and nth term = a + (n-1)d
From these two equations, find the value of a and d. Now use the formula of sum of p terms of an AP.
Sum of p terms =
( p * ( 2*a + (p-1) * d ) ) / 2;
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate the value of the pair< double , double > findingValues( double m, double n, double mth, double nth) { // Calculate value of d using formula double d = ( abs (mth - nth)) / abs ((m - 1) - (n - 1)); // Calculate value of a using formula double a = mth - ((m - 1) * d); // Return pair return make_pair(a, d); } // Function to calculate value sum // of first p numbers of the series double findSum( int m, int n, int mth, int nth, int p) { pair< double , double > ad; // First calculate value of a and d ad = findingValues(m, n, mth, nth); double a = ad.first, d = ad.second; // Calculate the sum by using formula double sum = (p * (2 * a + (p - 1) * d)) / 2; // Return the sum return sum; } // Driven Code int main() { double m = 6, n = 10, mTerm = 12, nTerm = 20, p = 5; cout << findSum(m, n, mTerm, nTerm, p) << endl; return 0; } |
Java
// Java implementation of the above approach import java.util.*; class GFG { // Function to calculate the value of the static ArrayList<Integer> findingValues( int m, int n, int mth, int nth) { // Calculate value of d using formula int d = (Math.abs(mth - nth)) / Math.abs((m - 1 ) - (n - 1 )); // Calculate value of a using formula int a = mth - ((m - 1 ) * d); ArrayList<Integer> res= new ArrayList<Integer>(); res.add(a); res.add(d); // Return pair return res; } // Function to calculate value sum // of first p numbers of the series static int findSum( int m, int n, int mth, int nth, int p) { // First calculate value of a and d ArrayList<Integer> ad = findingValues(m, n, mth, nth); int a = ad.get( 0 ); int d = ad.get( 1 ); // Calculate the sum by using formula int sum = (p * ( 2 * a + (p - 1 ) * d)) / 2 ; // Return the sum return sum; } // Driver Code public static void main (String[] args) { int m = 6 , n = 10 , mTerm = 12 , nTerm = 20 , p = 5 ; System.out.println(findSum(m, n, mTerm, nTerm, p)); } } // This code is contributed by chandan_jnu |
Python3
# Python3 implementation of the above approach import math as mt # Function to calculate the value of the def findingValues(m, n, mth, nth): # Calculate value of d using formula d = (( abs (mth - nth)) / abs ((m - 1 ) - (n - 1 ))) # Calculate value of a using formula a = mth - ((m - 1 ) * d) # Return pair return a, d # Function to calculate value sum # of first p numbers of the series def findSum(m, n, mth, nth, p): # First calculate value of a and d a,d = findingValues(m, n, mth, nth) # Calculate the sum by using formula Sum = (p * ( 2 * a + (p - 1 ) * d)) / 2 # Return the Sum return Sum # Driver Code m = 6 n = 10 mTerm = 12 nTerm = 20 p = 5 print (findSum(m, n, mTerm, nTerm, p)) # This code is contributed by # Mohit Kumar 29 |
C#
// C# implementation of the above approach using System; using System.Collections; class GFG { // Function to calculate the value of the static ArrayList findingValues( int m, int n, int mth, int nth) { // Calculate value of d using formula int d = (Math.Abs(mth - nth)) / Math.Abs((m - 1) - (n - 1)); // Calculate value of a using formula int a = mth - ((m - 1) * d); ArrayList res= new ArrayList(); res.Add(a); res.Add(d); // Return pair return res; } // Function to calculate value sum // of first p numbers of the series static int findSum( int m, int n, int mth, int nth, int p) { // First calculate value of a and d ArrayList ad = findingValues(m, n, mth, nth); int a = ( int )ad[0]; int d = ( int )ad[1]; // Calculate the sum by using formula int sum = (p * (2 * a + (p - 1) * d)) / 2; // Return the sum return sum; } // Driver Code public static void Main () { int m = 6, n = 10, mTerm = 12, nTerm = 20, p = 5; Console.WriteLine(findSum(m, n, mTerm, nTerm, p)); } } // This code is contributed by chandan_jnu |
PHP
<?php // PHP implementation of the above approach // Function to calculate the value of the function findingValues( $m , $n , $mth , $nth ) { // Calculate value of d using formula $d = ( abs ( $mth - $nth )) / abs (( $m - 1) - ( $n - 1)); // Calculate value of a using formula $a = $mth - (( $m - 1) * $d ); // Return pair return array ( $a , $d ); } // Function to calculate value sum // of first p numbers of the series function findSum( $m , $n , $mth , $nth , $p ) { // First calculate value of a and d $ad = findingValues( $m , $n , $mth , $nth ); $a = $ad [0]; $d = $ad [1]; // Calculate the sum by using formula $sum = ( $p * (2 * $a + ( $p - 1) * $d )) / 2; // Return the sum return $sum ; } // Driver Code $m = 6; $n = 10; $mTerm = 12; $nTerm = 20; $p = 5; echo findSum( $m , $n , $mTerm , $nTerm , $p ); // This code is contributed by Ryuga ?> |
Javascript
<script> // JavaScript implementation of the above approach // Function to calculate the value of the function findingValues(m, n, mth, nth) { // Calculate value of d using formula let d = parseInt( (Math.abs(mth - nth)) / Math.abs((m - 1) - (n - 1)), 10); // Calculate value of a using formula let a = mth - ((m - 1) * d); let res = []; res.push(a); res.push(d); // Return pair return res; } // Function to calculate value sum // of first p numbers of the series function findSum(m, n, mth, nth, p) { // First calculate value of a and d let ad = findingValues(m, n, mth, nth); let a = ad[0]; let d = ad[1]; // Calculate the sum by using formula let sum = parseInt((p * (2 * a + (p - 1) * d)) / 2, 10); // Return the sum return sum; } let m = 6, n = 10, mTerm = 12, nTerm = 20, p = 5; document.write(findSum(m, n, mTerm, nTerm, p)); </script> |
Output:
30
Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please Login to comment...