Sum of first n term of Series 3, 5, 9, 17, 33….
Given n, we need to find sum of first n terms of the series represented as Sn = 3 + 5 + 9 + 17 + 33 … upto n
Examples:
Input : 2 Output : 8 3 + 5 = 8 Input : 5 Output : 67 3 + 5 + 9 + 17 + 33 = 67
Let, the nth term be denoted by tn.
This problem can easily be solved by splitting each term as follows :
Sn = 3 + 5 + 9 + 17 + 33……
Sn = (2+1) + (4+1) + (8+1) + (16+1) +……
Sn = (2+1) + (2*2+1) + (2*2*2+1) + (2*2*2*2+1) +……+ ((2*2*2..unto n times) + 1)
We observed that the nth term can be written in terms of powers of 2 and 1.
Hence, the sum of first n terms is given as follows:
Sn = (2+1) + (4+1) + (8+1) + (16+1) +……+ upto n terms
Sn = (1 + 1 + 1 + 1 + …unto n terms) + (2 + 4 + 8 + 16 + …upto nth power of 2)
In above formula,
2 + 4 + 8 + 16…. is a G.P.
It’s sum of first n terms is given by 2*(2^n-1)/(2-1) = 2^(n+1) – 2 (using G.P. formula)
Sn = n + 2*(2^n – 1)
Sn = 2^(n+1) + n -2
C++
// C++ program to find sum of first n terms #include <bits/stdc++.h> using namespace std; int calculateSum( int n) { // Sn = n*(4*n*n + 6*n - 1)/3 return ( pow (2, n + 1) + n - 2); } // Driver code int main() { // number of terms to be included in sum int n = 4; // find the Sn cout << "Sum = " << calculateSum(n); return 0; } |
Java
// Java program to find // sum of first n terms import java.util.*; class GFG { static int calculateSum( int n) { // Sn = n*(4*n*n + 6*n - 1)/3 return (( int )Math.pow( 2 , n + 1 ) + n - 2 ); } // Driver Code public static void main(String args[]) { // number of terms to // be included in sum int n = 4 ; // find the Sn System.out.println( "Sum = " + calculateSum(n)); } } // This code is contributed // by Kirti_Mangal |
Python
# Python program to find sum # of n terms of the series def calculateSum(n): return ( 2 * * (n + 1 ) + n - 2 ) # Driver Code # number of terms for the sum n = 4 # find the Sn print ( "Sum =" , calculateSum(n)) # This code is contributed # by Surendra_Gangwar |
C#
//C# program to find // sum of first n terms using System; class GFG { static int calculateSum( int n) { // Sn = n*(4*n*n + 6*n - 1)/3 return (( int )Math.Pow(2, n + 1) + n - 2); } // Driver Code public static void Main() { // number of terms to // be included in sum int n = 4; // find the Sn Console.WriteLine( "Sum = " + calculateSum(n)); } } // This code is contributed // by inder_verma.. |
PHP
<?php // PHP program to find sum // of first n terms function calculateSum( $n ) { // Sn = n*(4*n*n + 6*n - 1)/3 return (pow(2, $n + 1) + $n - 2); } // Driver code // number of terms to be // included in sum $n = 4; // find the Sn echo "Sum = " , calculateSum( $n ); // This code is contributed // by inder_verma.. ?> |
Javascript
<script> // Java script program to find // sum of first n terms function calculateSum( n) { // Sn = n*(4*n*n + 6*n - 1)/3 return (Math.pow(2, n + 1) + n - 2); } // Driver Code // number of terms to // be included in sum let n = 4; // find the Sn document.write( "Sum = " + calculateSum(n)); // This code is contributed by mohan pavan </script> |
Sum = 34