Sum of first N Star Numbers
Given a number N, the task is to find the sum of the first N star numbers.
The first few star numbers are 1, 13, 37, 73,..
Examples:
Input: N = 2
Output: 14
Explanation: 1, 13 are the first two star numbers.Input: N = 3
Output: 51
Approach 1:
- Nth Star number is given as
- Run a loop from 1 to N, to find the first N star numbers.
- Add all the above-calculated star numbers.
- Return the sum.
Below is the implementation of the above approach:
C++
// C++ program to find the sum of // the first N Star Number #include <bits/stdc++.h> using namespace std; // Function to find the N-th // Star Number int star_num( int n) { // Formula to calculate nth // Star Number return (6 * n * n - 6 * n + 1); } // Function to find the sum of the // first N Star Number int sum_star_num( int n) { // Variable to store the sum int summ = 0; // Iterating from 1 to N for ( int i = 1; i < n + 1; i++) { // Finding the sum summ += star_num(i); } return summ; } // Driver code int main() { int n = 3; cout << sum_star_num(n); } // This code is contributed by spp____ |
Java
// Java program to find the sum of // the first N Star Number class GFG{ // Function to find the N-th // Star Number static int star_num( int n) { // Formula to calculate nth // Star Number return ( 6 * n * n - 6 * n + 1 ); } // Function to find the sum of the // first N Star Number static int sum_star_num( int n) { // Variable to store the sum int summ = 0 ; // Iterating from 1 to N for ( int i = 1 ; i < n + 1 ; i++) { // Finding the sum summ += star_num(i); } return summ; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.println(sum_star_num(n)); } } // This code is contributed by rock_cool |
Python3
# Python3 program to find the # sum of the first N # star numbers # Function to find the # N-th star # number def star_num(n): # Formula to calculate # nth star # number return ( 6 * n * n - 6 * n + 1 ) # Function to find the sum of # the first N star numbers def sum_star_num(n) : # Variable to store # the sum summ = 0 # Iterating in the range # 1 to N for i in range ( 1 , n + 1 ): summ + = star_num(i) return summ # Driver code n = 3 print (sum_star_num(n)) |
C#
// C# program to find the sum of // the first N Star Number using System; class GFG{ // Function to find the N-th // Star Number static int star_num( int n) { // Formula to calculate nth // Star Number return (6 * n * n - 6 * n + 1); } // Function to find the sum of the // first N Star Number static int sum_star_num( int n) { // Variable to store the sum int summ = 0; // Iterating from 1 to N for ( int i = 1; i < n + 1; i++) { // Finding the sum summ += star_num(i); } return summ; } // Driver code public static void Main(String[] args) { int n = 3; Console.WriteLine(sum_star_num(n)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program to find the sum of // the first N Star Number // Function to find the N-th // Star Number function star_num(n) { // Formula to calculate nth // Star Number return (6 * n * n - 6 * n + 1); } // Function to find the sum of the // first N Star Number function sum_star_num(n) { // Variable to store the sum let summ = 0; // Iterating from 1 to N for (let i = 1; i < n + 1; i++) { // Finding the sum summ += star_num(i); } return summ; } let n = 3; document.write(sum_star_num(n)); </script> |
Output
51
Time complexity: O(N).
Auxiliary Space: O(1)
Efficient Approach:
- We already know
,
,
and
- Nth star number is given as
- So, the sum of the first N Star Numbers is
Sum =
Sum =
Sum = - Calculate the sum and return.
Below is the implementation of the above approach:
C++
// C++ program to find the // sum of the first N // star numbers #include <bits/stdc++.h> using namespace std; // Function to find the // sum of the first N // star number int sum_star_num( int n) { // Variable to store // the sum int summ = 2 * n * (n + 1) * (n - 1) + n; return summ; } // Driver code int main() { int n = 3; cout << sum_star_num(n); return 0; } // This code is contributed by Amit Katiyar |
Java
// Java program to find the // sum of the first N // star numbers class GFG{ // Function to find the // sum of the first N // star number static int sum_star_num( int n) { // Variable to store // the sum int summ = 2 * n * (n + 1 ) * (n - 1 ) + n; return summ; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.println(sum_star_num(n)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to find the # sum of the first N # star numbers # Function to find the # sum of the first N # star number def sum_star_num(n) : # Variable to store # the sum summ = 2 * n * (n + 1 ) * (n - 1 ) + n return summ # Driver code n = 3 print (sum_star_num(n)) |
C#
// C# program to find the // sum of the first N // star numbers using System; class GFG{ // Function to find the // sum of the first N // star number static int sum_star_num( int n) { // Variable to store // the sum int summ = 2 * n * (n + 1) * (n - 1) + n; return summ; } // Driver code public static void Main(String[] args) { int n = 3; Console.WriteLine(sum_star_num(n)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to find the // sum of the first N // star numbers // Function to find the // sum of the first N // star number function sum_star_num(n) { // Variable to store // the sum let summ = 2 * n * (n + 1) * (n - 1) + n; return summ; } // Driver code let n = 3; document.write(sum_star_num(n)); // This code is contributed by rishavmahato348. </script> |
Output
51
Time complexity: O(1).
Auxiliary Space: O(1)
Please Login to comment...