Sum of Bitwise OR of each array element of an array with all elements of another array
Given two arrays arr1[] of size M and arr2[] of size N, the task is to find the sum of bitwise OR of each element of arr1[] with every element of the array arr2[].
Examples:
Input: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3
Output: 7 8 9
Explanation:
For arr[0]: Sum = arr1[0]|arr2[0] + arr1[0]|arr2[1] + arr1[0]|arr2[2], Sum = 1|1 + 1|2 + 1|3 = 7
For arr[1], Sum = arr1[1]|arr2[0] + arr1[1]|arr2[1] + arr1[1]|arr2[2], Sum= 2|1 + 2|2 + 2|3 = 8
For arr[2], Sum = arr1[2]|arr2[0] + arr1[2]|arr2[1] + arr1[2]|arr2[2], Sum = 3|1 + 3|2 + 3|3 = 9Input: arr1[] = {2, 4, 8, 16}, arr2[] = {2, 4, 8, 16}, M = 4, N = 4
Output: 36 42 54 78
Naive Approach: The simplest0 approach to solve this problem to traverse the array arr1[] and for each array element in the array arr[], calculate Bitwise OR of each element in the array arr2[].
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to use Bit Manipulation to solve the above problem.
- According to the Bitwise OR property, while performing the operation, the ith bit will be set bit only when either of both numbers has a set bit at the ith position, where 0 ≤ i <32.
- Therefore, for a number in arr1[], if the ith bit is not a set bit, then the ith place will contribute a sum of K * 2i , where K is the total number in arr2[] having set bit at the ith position.
- Otherwise, if the number has a set bit at the ith place, then it will contribute a sum of N * 2i.
Follow the steps below to solve the problem:
- Initialize an integer array, say frequency[], to store the count of numbers in arr2[] having set-bit at ith position ( 0 ≤ i < 32).
- Traverse the array arr2[] and represent each array element in its binary form and increment the count in the frequency[] array by one at the positions having set bit in the binary representations.
- Traverse the array arr1[].
- Initialize an integer variable, say bitwise_OR_sum with 0.
- Traverse in the range [0, 31] using variable j.
- If the jth bit is set in the binary representation of arr2[i], then increment bitwise_OR_sum by N * 2j. Otherwise, increment by frequency[j] * 2j
- Print the sum obtained bitwise_OR_sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to compute sum of Bitwise OR // of each element in arr1[] with all // elements of the array arr2[] void Bitwise_OR_sum_i( int arr1[], int arr2[], int M, int N) { // Declaring an array of // size 32 to store the // count of each bit int frequency[32] = { 0 }; // Traverse the array arr1[] for ( int i = 0; i < N; i++) { // Current bit position int bit_position = 0; int num = arr1[i]; // While num exceeds 0 while (num) { // Checks if i-th bit // is set or not if (num & 1) { // Increment the count at // bit_position by one frequency[bit_position] += 1; } // Increment bit_position bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for ( int i = 0; i < M; i++) { int num = arr2[i]; // Store the ith bit value int value_at_that_bit = 1; // Total required sum int bitwise_OR_sum = 0; // Traverse in the range [0, 31] for ( int bit_position = 0; bit_position < 32; bit_position++) { // Check if current bit is set if (num & 1) { // Increment the Bitwise // sum by N*(2^i) bitwise_OR_sum += N * value_at_that_bit; } else { bitwise_OR_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift valee_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] cout << bitwise_OR_sum << ' ' ; } return ; } // Driver Code int main() { // Given arr1[] int arr1[] = { 1, 2, 3 }; // Given arr2[] int arr2[] = { 1, 2, 3 }; // Size of arr1[] int N = sizeof (arr1) / sizeof (arr1[0]); // Size of arr2[] int M = sizeof (arr2) / sizeof (arr2[0]); // Function Call Bitwise_OR_sum_i(arr1, arr2, M, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to compute sum of Bitwise OR // of each element in arr1[] with all // elements of the array arr2[] static void Bitwise_OR_sum_i( int arr1[], int arr2[], int M, int N) { // Declaring an array of // size 32 to store the // count of each bit int frequency[] = new int [ 32 ]; Arrays.fill(frequency, 0 ); // Traverse the array arr1[] for ( int i = 0 ; i < N; i++) { // Current bit position int bit_position = 0 ; int num = arr1[i]; // While num exceeds 0 while (num != 0 ) { // Checks if i-th bit // is set or not if ((num & 1 ) != 0 ) { // Increment the count at // bit_position by one frequency[bit_position] += 1 ; } // Increment bit_position bit_position += 1 ; // Right shift the num by one num >>= 1 ; } } // Traverse in the arr2[] for ( int i = 0 ; i < M; i++) { int num = arr2[i]; // Store the ith bit value int value_at_that_bit = 1 ; // Total required sum int bitwise_OR_sum = 0 ; // Traverse in the range [0, 31] for ( int bit_position = 0 ; bit_position < 32 ; bit_position++) { // Check if current bit is set if ((num & 1 ) != 0 ) { // Increment the Bitwise // sum by N*(2^i) bitwise_OR_sum += N * value_at_that_bit; } else { bitwise_OR_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1 ; // Left shift valee_at_that_bit by one value_at_that_bit <<= 1 ; } // Print the sum obtained for ith // number in arr1[] System.out.print(bitwise_OR_sum + " " ); } return ; } // Driver code public static void main(String[] args) { // Given arr1[] int arr1[] = { 1 , 2 , 3 }; // Given arr2[] int arr2[] = { 1 , 2 , 3 }; // Size of arr1[] int N = arr1.length; // Size of arr2[] int M = arr2.length; // Function Call Bitwise_OR_sum_i(arr1, arr2, M, N); } } // This code is contributed by susmitakundugoaldanga |
Python3
# Python3 program for the above approach # Function to compute sum of Bitwise OR # of each element in arr1[] with all # elements of the array arr2[] def Bitwise_OR_sum_i(arr1, arr2, M, N): # Declaring an array of # size 32 to store the # count of each bit frequency = [ 0 ] * 32 # Traverse the array arr1[] for i in range (N): # Current bit position bit_position = 0 num = arr1[i] # While num exceeds 0 while (num): # Checks if i-th bit # is set or not if (num & 1 ! = 0 ): # Increment the count at # bit_position by one frequency[bit_position] + = 1 # Increment bit_position bit_position + = 1 # Right shift the num by one num >> = 1 # Traverse in the arr2[] for i in range (M): num = arr2[i] # Store the ith bit value value_at_that_bit = 1 # Total required sum bitwise_OR_sum = 0 # Traverse in the range [0, 31] for bit_position in range ( 32 ): # Check if current bit is set if (num & 1 ! = 0 ): # Increment the Bitwise # sum by N*(2^i) bitwise_OR_sum + = N * value_at_that_bit else : bitwise_OR_sum + = (frequency[bit_position] * value_at_that_bit) # Right shift num by one num >> = 1 # Left shift valee_at_that_bit by one value_at_that_bit << = 1 # Print the sum obtained for ith # number in arr1[] print (bitwise_OR_sum, end = " " ) return # Driver Code # Given arr1[] arr1 = [ 1 , 2 , 3 ] # Given arr2[] arr2 = [ 1 , 2 , 3 ] # Size of arr1[] N = len (arr1) # Size of arr2[] M = len (arr2) # Function Call Bitwise_OR_sum_i(arr1, arr2, M, N) # This code is contributed by code_hunt |
C#
// C# program for the above approach using System; class GFG { // Function to compute sum of Bitwise OR // of each element in arr1[] with all // elements of the array arr2[] static void Bitwise_OR_sum_i( int [] arr1, int [] arr2, int M, int N) { // Declaring an array of // size 32 to store the // count of each bit int [] frequency = new int [32]; for ( int i = 0; i < 32; i++) { frequency[i] = 0; } // Traverse the array arr1[] for ( int i = 0; i < N; i++) { // Current bit position int bit_position = 0; int num = arr1[i]; // While num exceeds 0 while (num != 0) { // Checks if i-th bit // is set or not if ((num & 1) != 0) { // Increment the count at // bit_position by one frequency[bit_position] += 1; } // Increment bit_position bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for ( int i = 0; i < M; i++) { int num = arr2[i]; // Store the ith bit value int value_at_that_bit = 1; // Total required sum int bitwise_OR_sum = 0; // Traverse in the range [0, 31] for ( int bit_position = 0; bit_position < 32; bit_position++) { // Check if current bit is set if ((num & 1) != 0) { // Increment the Bitwise // sum by N*(2^i) bitwise_OR_sum += N * value_at_that_bit; } else { bitwise_OR_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift valee_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] Console.Write(bitwise_OR_sum + " " ); } return ; } // Driver Code public static void Main() { // Given arr1[] int [] arr1 = { 1, 2, 3 }; // Given arr2[] int [] arr2 = { 1, 2, 3 }; // Size of arr1[] int N = arr1.Length; // Size of arr2[] int M = arr2.Length; // Function Call Bitwise_OR_sum_i(arr1, arr2, M, N); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // Javascript program for the above approach // Function to compute sum of Bitwise OR // of each element in arr1[] with all // elements of the array arr2[] function Bitwise_OR_sum_i(arr1, arr2, M, N) { // Declaring an array of // size 32 to store the // count of each bit let frequency = new Array(32).fill(0); // Traverse the array arr1[] for (let i = 0; i < N; i++) { // Current bit position let bit_position = 0; let num = arr1[i]; // While num exceeds 0 while (num) { // Checks if i-th bit // is set or not if (num & 1) { // Increment the count at // bit_position by one frequency[bit_position] += 1; } // Increment bit_position bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for (let i = 0; i < M; i++) { let num = arr2[i]; // Store the ith bit value let value_at_that_bit = 1; // Total required sum let bitwise_OR_sum = 0; // Traverse in the range [0, 31] for (let bit_position = 0; bit_position < 32; bit_position++) { // Check if current bit is set if (num & 1) { // Increment the Bitwise // sum by N*(2^i) bitwise_OR_sum += N * value_at_that_bit; } else { bitwise_OR_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift valee_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] document.write(bitwise_OR_sum + ' ' ); } return ; } // Driver Code // Given arr1[] let arr1 = [1, 2, 3]; // Given arr2[] let arr2 = [1, 2, 3]; // Size of arr1[] let N = arr1.length; // Size of arr2[] let M = arr2.length; // Function Call Bitwise_OR_sum_i(arr1, arr2, M, N); // This code is contributed by _saurabh_jaiswal </script> |
7 8 9
Time Complexity: O(N*32)
Auxiliary Space: O(1) because size of frequency array is constant
Please Login to comment...