Sum of all the prime divisors of a number
Given a number N. The task is to find the sum of all the prime divisors of N.
Examples:
Input: 60 Output: 10 2, 3, 5 are prime divisors of 60 Input: 39 Output: 16 3, 13 are prime divisors of 39
A naive approach will be to iterate for all numbers till N and check if the number divides N. If the number divides N, check if that number is prime or not. Add all the prime numbers till N which divides N.
Below is the implementation of the above approach:
C++
// CPP program to find sum of // prime divisors of N #include <bits/stdc++.h> using namespace std; #define N 1000005 // Function to check if the // number is prime or not. bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N int SumOfPrimeDivisors( int n) { int sum = 0; for ( int i = 1; i <= n; i++) { if (n % i == 0) { if (isPrime(i)) sum += i; } } return sum; } // Driver code int main() { int n = 60; cout << "Sum of prime divisors of 60 is " << SumOfPrimeDivisors(n) << endl; } |
C
// C program to find sum of // prime divisors of N #include <stdio.h> #include <stdbool.h> #define N 1000005 // Function to check if the // number is prime or not. bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N int SumOfPrimeDivisors( int n) { int sum = 0; for ( int i = 1; i <= n; i++) { if (n % i == 0) { if (isPrime(i)) sum += i; } } return sum; } // Driver code int main() { int n = 60; printf ( "Sum of prime divisors of 60 is %d\n" ,SumOfPrimeDivisors(n)); } // This code is contributed by kothavvsaakash. |
Java
// Java program to find sum // of prime divisors of N import java.io.*; import java.util.*; class GFG { // Function to check if the // number is prime or not. static boolean isPrime( int n) { // Corner cases if (n <= 1 ) return false ; if (n <= 3 ) return true ; // This is checked so that // we can skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0 ) return false ; for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return false ; return true ; } // function to find // sum of prime // divisors of N static int SumOfPrimeDivisors( int n) { int sum = 0 ; for ( int i = 1 ; i <= n; i++) { if (n % i == 0 ) { if (isPrime(i)) sum += i; } } return sum; } // Driver code public static void main(String args[]) { int n = 60 ; System.out.print( "Sum of prime divisors of 60 is " + SumOfPrimeDivisors(n) + "\n" ); } } |
C#
// C# program to find sum // of prime divisors of N using System; class GFG { // Function to check if the // number is prime or not. static bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that // we can skip middle five // numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find // sum of prime // divisors of N static int SumOfPrimeDivisors( int n) { int sum = 0; for ( int i = 1; i <= n; i++) { if (n % i == 0) { if (isPrime(i)) sum += i; } } return sum; } // Driver code public static void Main() { int n = 60; Console.WriteLine( "Sum of prime divisors of 60 is " + SumOfPrimeDivisors(n) + "\n" ); } } // This code is contributed // by inder_verma. |
Python3
# Python 3 program to find # sum of prime divisors of N N = 1000005 # Function to check if the # number is prime or not. def isPrime(n): # Corner cases if n < = 1 : return False if n < = 3 : return True # This is checked so that # we can skip middle five # numbers in below loop if n % 2 = = 0 or n % 3 = = 0 : return False i = 5 while i * i < = n: if (n % i = = 0 or n % (i + 2 ) = = 0 ): return False i = i + 6 return True # function to find sum # of prime divisors of N def SumOfPrimeDivisors(n): sum = 0 for i in range ( 1 , n + 1 ) : if n % i = = 0 : if isPrime(i): sum + = i return sum # Driver code n = 60 print ( "Sum of prime divisors of 60 is " + str (SumOfPrimeDivisors(n))) # This code is contributed # by ChitraNayal |
PHP
<?php // PHP program to find sum // of prime divisors of N $N = 1000005; // Function to check if the // number is prime or not. function isPrime( $n ) { global $N ; // Corner cases if ( $n <= 1) return false; if ( $n <= 3) return true; // This is checked so that // we can skip middle five // numbers in below loop if ( $n % 2 == 0 || $n % 3 == 0) return false; for ( $i = 5; $i * $i <= $n ; $i = $i + 6) if ( $n % $i == 0 || $n % ( $i + 2) == 0) return false; return true; } // function to find sum // of prime divisors of N function SumOfPrimeDivisors( $n ) { $sum = 0; for ( $i = 1; $i <= $n ; $i ++) { if ( $n % $i == 0) { if (isPrime( $i )) $sum += $i ; } } return $sum ; } // Driver code $n = 60; echo "Sum of prime divisors of 60 is " . SumOfPrimeDivisors( $n ); // This code is contributed // by ChitraNayal ?> |
Javascript
<script> // Javascript program to find sum of // prime divisors of N let N = 1000005; // Function to check if the // number is prime or not. function isPrime(n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N function SumOfPrimeDivisors(n) { let sum = 0; for (let i = 1; i <= n; i++) { if (n % i == 0) { if (isPrime(i)) sum += i; } } return sum; } // Driver code let n = 60; document.write( "Sum of prime divisors of 60 is " +SumOfPrimeDivisors(n)); // This code is contributed by avanitrachhadiya2155 </script> |
Sum of prime divisors of 60 is 10
Time Complexity: O(N * sqrt(N))
Efficient Approach: The complexity can be reduced using Sieve of Eratosthenes with some modifications. The modifications are as follows:
- Take an array of size N and substitute zero in all the indexes(initially consider all the numbers are prime).
- Iterate for all the numbers whose indexes have zero(i.e., it is prime numbers).
- Add this number to all it’s multiples less than N
- Return the array[N] value which has the sum stored in it.
Below is the implementation of the above approach.
C++
// CPP program to find prime divisors of // all numbers from 1 to n #include <bits/stdc++.h> using namespace std; // function to find prime divisors of // all numbers from 1 to n int Sum( int N) { int SumOfPrimeDivisors[N+1] = { 0 }; for ( int i = 2; i <= N; ++i) { // if the number is prime if (!SumOfPrimeDivisors[i]) { // add this prime to all it's multiples for ( int j = i; j <= N; j += i) { SumOfPrimeDivisors[j] += i; } } } return SumOfPrimeDivisors[N]; } // Driver code int main() { int N = 60; cout << "Sum of prime divisors of 60 is " << Sum(N) << endl; } |
Java
// Java program to find // prime divisors of // all numbers from 1 to n import java.io.*; import java.util.*; class GFG { // function to find prime // divisors of all numbers // from 1 to n static int Sum( int N) { int SumOfPrimeDivisors[] = new int [N + 1 ]; for ( int i = 2 ; i <= N; ++i) { // if the number is prime if (SumOfPrimeDivisors[i] == 0 ) { // add this prime to // all it's multiples for ( int j = i; j <= N; j += i) { SumOfPrimeDivisors[j] += i; } } } return SumOfPrimeDivisors[N]; } // Driver code public static void main(String args[]) { int N = 60 ; System.out.print( "Sum of prime " + "divisors of 60 is " + Sum(N) + "\n" ); } } |
Python3
# Python 3 program to find # prime divisors of # all numbers from 1 to n # function to find prime # divisors of all numbers # from 1 to n def Sum (N): SumOfPrimeDivisors = [ 0 ] * (N + 1 ) for i in range ( 2 , N + 1 ) : # if the number is prime if (SumOfPrimeDivisors[i] = = 0 ) : # add this prime to # all it's multiples for j in range (i, N + 1 , i) : SumOfPrimeDivisors[j] + = i return SumOfPrimeDivisors[N] # Driver code N = 60 print ( "Sum of prime" , "divisors of 60 is" , Sum (N)); # This code is contributed # by Smitha |
C#
// C# program to find // prime divisors of // all numbers from 1 to n using System; class GFG { // function to find prime // divisors of all numbers // from 1 to n static int Sum( int N) { int []SumOfPrimeDivisors = new int [N + 1]; for ( int i = 2; i <= N; ++i) { // if the number is prime if (SumOfPrimeDivisors[i] == 0) { // add this prime to // all it's multiples for ( int j = i; j <= N; j += i) { SumOfPrimeDivisors[j] += i; } } } return SumOfPrimeDivisors[N]; } // Driver code public static void Main() { int N = 60; Console.Write( "Sum of prime " + "divisors of 60 is " + Sum(N) + "\n" ); } } // This code is contributed // by Smitha |
PHP
<?php // PHP program to find prime // divisors of all numbers // from 1 to n // function to find prime // divisors of all numbers // from 1 to n function Sum( $N ) { for ( $i = 0; $i <= $N ; $i ++) $SumOfPrimeDivisors [ $i ] = 0; for ( $i = 2; $i <= $N ; ++ $i ) { // if the number is prime if (! $SumOfPrimeDivisors [ $i ]) { // add this prime to // all it's multiples for ( $j = $i ; $j <= $N ; $j += $i ) { $SumOfPrimeDivisors [ $j ] += $i ; } } } return $SumOfPrimeDivisors [ $N ]; } // Driver code $N = 60; echo "Sum of prime divisors of 60 is " . Sum( $N ); // This code is contributed by Mahadev99 ?> |
Javascript
<script> // Javascript program to find // prime divisors of // all numbers from 1 to n // function to find prime // divisors of all numbers // from 1 to n function Sum(N) { let SumOfPrimeDivisors = new Array(N+1); for (let i=0;i<SumOfPrimeDivisors.length;i++) { SumOfPrimeDivisors[i]=0; } for (let i = 2; i <= N; ++i) { // if the number is prime if (SumOfPrimeDivisors[i] == 0) { // add this prime to // all it's multiples for (let j = i; j <= N; j += i) { SumOfPrimeDivisors[j] += i; } } } return SumOfPrimeDivisors[N]; } // Driver code let N = 60; document.write( "Sum of prime " + "divisors of 60 is " + Sum(N) + "<br>" ); // This code is contributed by rag2127 </script> |
Sum of prime divisors of 60 is 10
Time Complexity: O(N * log N)
Efficient Approach:
Time complexity can be reduced by finding all the factors efficiently. Below approach describe how to find all the factors efficiently. If we look carefully, all the divisors are present in pairs. For example if n = 100, then the various pairs of divisors are: (1,100), (2,50), (4,25), (5,20), (10,10) Using this fact we could speed up our program significantly. We, however, have to be careful if there are two equal divisors as in the case of (10, 10). In such case, we’d take only one of them.
Below is the implementation of the above approach.
C++
// C++ program to find sum of // prime divisors of N #include <bits/stdc++.h> using namespace std; // Function to check if the // number is prime or not. bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N int SumOfPrimeDivisors( int n) { int sum = 0; // return type of sqrt function // if float int root_n = ( int ) sqrt (n); for ( int i = 1; i <= root_n; i++) { if (n % i == 0) { // both factors are same if (i == n / i && isPrime(i)) { sum += i; } else { // both factors are // not same ( i and n/i ) if (isPrime(i)) { sum += i; } if (isPrime(n / i)) { sum += (n / i); } } } } return sum; } // Driver code int main() { int n = 60; cout << "Sum of prime divisors of 60 is " << SumOfPrimeDivisors(n) << endl; } // This code is contributed by hemantraj712 |
C
// C program to find sum of // prime divisors of N #include <stdio.h> #include <stdbool.h> #include <math.h> // Function to check if the // number is prime or not. bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N int SumOfPrimeDivisors( int n) { int sum = 0; // return type of sqrt function // if float int root_n = ( int ) sqrt (n); for ( int i = 1; i <= root_n; i++) { if (n % i == 0) { // both factors are same if (i == n / i && isPrime(i)) { sum += i; } else { // both factors are // not same ( i and n/i ) if (isPrime(i)) { sum += i; } if (isPrime(n / i)) { sum += (n / i); } } } } return sum; } // Driver code int main() { int n = 60; printf ( "Sum of prime divisors of 60 is %d\n" ,SumOfPrimeDivisors(n)); } // This code is contributed by hemantraj712 |
Java
// Java program to find sum of // prime divisors of N class GFG{ // Function to check if the // number is prime or not. static boolean isPrime( int n) { // Corner cases if (n <= 1 ) return false ; if (n <= 3 ) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0 ) return false ; for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return false ; return true ; } // Function to find sum of prime // divisors of N static int SumOfPrimeDivisors( int n) { int sum = 0 ; // Return type of sqrt function // if float int root_n = ( int )Math.sqrt(n); for ( int i = 1 ; i <= root_n; i++) { if (n % i == 0 ) { // Both factors are same if (i == n / i && isPrime(i)) { sum += i; } else { // Both factors are // not same ( i and n/i ) if (isPrime(i)) { sum += i; } if (isPrime(n / i)) { sum += (n / i); } } } } return sum; } // Driver code public static void main(String[] args) { int n = 60 ; System.out.println( "Sum of prime divisors of 60 is " + SumOfPrimeDivisors(n)); } } // This code is contributed by divyeshrabadiya07 |
Python3
# Python3 program to find sum of # prime divisors of N import math # Function to check if the # number is prime or not. def isPrime(n) : # Corner cases if (n < = 1 ) : return False if (n < = 3 ) : return True # This is checked so that we can skip # middle five numbers in below loop if (n % 2 = = 0 or n % 3 = = 0 ) : return False i = 5 while i * i < = n : if (n % i = = 0 or n % (i + 2 ) = = 0 ) : return False i = i + 6 return True # function to find sum of prime # divisors of N def SumOfPrimeDivisors(n) : Sum = 0 # return type of sqrt function # if float root_n = ( int )(math.sqrt(n)) for i in range ( 1 , root_n + 1 ) : if (n % i = = 0 ) : # both factors are same if (i = = ( int )(n / i) and isPrime(i)) : Sum + = i else : # both factors are # not same ( i and n/i ) if (isPrime(i)) : Sum + = i if (isPrime(( int )(n / i))) : Sum + = ( int )(n / i) return Sum n = 60 print ( "Sum of prime divisors of 60 is" , SumOfPrimeDivisors(n)) # This code is contributed by rameshtravel07 |
C#
// C# program to find sum of // prime divisors of N using System; class GFG { // Function to check if the // number is prime or not. static bool isPrime( int n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N static int SumOfPrimeDivisors( int n) { int sum = 0; // return type of sqrt function // if float int root_n = ( int )Math.Sqrt(n); for ( int i = 1; i <= root_n; i++) { if (n % i == 0) { // both factors are same if (i == n / i && isPrime(i)) { sum += i; } else { // both factors are // not same ( i and n/i ) if (isPrime(i)) { sum += i; } if (isPrime(n / i)) { sum += (n / i); } } } } return sum; } static void Main() { int n = 60; Console.WriteLine( "Sum of prime divisors of 60 is " + SumOfPrimeDivisors(n)); } } // This code is contributed by suresh07. |
Javascript
<script> // Javascript program to find sum of // prime divisors of N // Function to check if the // number is prime or not. function isPrime(n) { // Corner cases if (n <= 1) return false ; if (n <= 3) return true ; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false ; for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // function to find sum of prime // divisors of N function SumOfPrimeDivisors(n) { let sum = 0; // return type of sqrt function // if float let root_n = parseInt(Math.sqrt(n), 10); for (let i = 1; i <= root_n; i++) { if (n % i == 0) { // both factors are same if (i == parseInt(n / i, 10) && isPrime(i)) { sum += i; } else { // both factors are // not same ( i and n/i ) if (isPrime(i)) { sum += i; } if (isPrime(parseInt(n / i, 10))) { sum += (parseInt(n / i, 10)); } } } } return sum; } let n = 60; document.write( "Sum of prime divisors of 60 is " + SumOfPrimeDivisors(n) + "</br>" ); // This code is contributed by muksh07. </script> |
Sum of prime divisors of 60 is 10
Time Complexity: O(sqrt(N) * sqrt(N))
Approach#4: Using filter, lambda, map
This approach defines two functions is_prime(n) and prime_divisor_sum(n) to determine whether a number is prime or not and to find the sum of all prime divisors of a number, respectively. The is_prime(n) function is used to filter out non-prime divisors using the filter() function inside prime_divisor_sum(n). Finally, the sum() function is used, to sum up all the prime divisors of the given number.
Algorithm
1. Define the function is_prime(n) to check if a number is prime or not. It returns True if the given number is prime, and False otherwise.
2. Define the function prime_divisor_sum(n) to find the sum of all prime divisors of the given number.
3. Use the filter() function inside prime_divisor_sum(n) to filter out all non-prime divisors from the range of 2 to n using a lambda function that checks if a number is a prime divisor of n.
4. Use the map() function to create an iterator that returns each element of the filtered iterator. The lambda function lambda x: x is used as the mapping function. It simply returns its input argument.
5. Finally, use the sum() function to sum up all the elements of the mapped iterator, giving the sum of all prime divisors of n.
Python3
def is_prime(n): if n < = 1 : return False for i in range ( 2 , int (n * * 0.5 ) + 1 ): if n % i = = 0 : return False return True def prime_divisor_sum(n): divisors = filter ( lambda x: n % x = = 0 and is_prime(x), range ( 2 , n + 1 )) return sum ( map ( lambda x: x, divisors)) n = 60 print (prime_divisor_sum(n)) |
10
Time complexity: O(sqrt(n)), as it checks all numbers from 2 to sqrt(n) to see if n is divisible by any of them. The time complexity of the filter() function is also O(sqrt(n)), as it applies the lambda function to each number from 2 to n and returns an iterator of prime divisors. The time complexity of the map() function is O(k), where k is the number of elements in the filtered iterator. The time complexity of the sum() function is O(k), where k is the number of elements in the mapped iterator. Therefore, the overall time complexity of the code is O(sqrt(n) + k).
Space complexity: O(k), where k is the number of prime divisors of n, since we store them in the filtered and mapped iterators.
Please Login to comment...