Sum of all products of the Binomial Coefficients of two numbers up to K
Given three integers N, M and K, the task is to calculate the sum of products of Binomial Coefficients C(N, i) and C(M, K – i), where i ranges between [0, K].
Examples:
Input: N = 2, M = 2, K = 2
Output: 6
Explanation:
C(2, 0) * C(2, 2) + C(2, 1) * C(2, 1) + C(2, 2) * C(2, 0) = 1*1 + 2*2 +1*1 = 6
Input: N = 2, M = 3, K = 1
Output: 5
Explanation:
C(2, 0) * C(3, 1) + C(2, 1) * C(3, 0) = 1*3 + 2*1 = 5
Naive Approach:The simplest approach to solve this problem is to simply iterate over the range [0, K] and calculate C(N, i) and C(M, K – 1) for every i and update sum by adding their product.
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // Function returns nCr // i.e. Binomial Coefficient int nCr( int n, int r) { // Initialize res with 1 int res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Function to calculate and // return the sum of the products int solve( int n, int m, int k) { // Initialize sum to 0 int sum = 0; // Traverse from 0 to k for ( int i = 0; i <= k; i++) sum += nCr(n, i) * nCr(m, k - i); return sum; } // Driver Code int main() { int n = 3, m = 2, k = 2; cout << solve(n, m, k); return 0; } |
Java
// Java implementation of // the above approach import java.util.*; class GFG{ // Function returns nCr // i.e. Binomial Coefficient static int nCr( int n, int r) { // Initialize res with 1 int res = 1 ; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0 ; i < r; ++i) { res *= (n - i); res /= (i + 1 ); } return res; } // Function to calculate and // return the sum of the products static int solve( int n, int m, int k) { // Initialize sum to 0 int sum = 0 ; // Traverse from 0 to k for ( int i = 0 ; i <= k; i++) sum += nCr(n, i) * nCr(m, k - i); return sum; } // Driver Code public static void main(String[] args) { int n = 3 , m = 2 , k = 2 ; System.out.print(solve(n, m, k)); } } // This code is contributed by Rohit_ranjan |
Python3
# Python3 implementation of # the above approach # Function returns nCr # i.e. Binomial Coefficient def nCr(n, r): # Initialize res with 1 res = 1 # Since C(n, r) = C(n, n-r) if r > n - r: r = n - r # Evaluating expression for i in range (r): res * = (n - i) res / = (i + 1 ) return res; # Function to calculate and # return the sum of the products def solve(n, m, k): # Initialize sum to 0 sum = 0 ; # Traverse from 0 to k for i in range (k + 1 ): sum + = nCr(n, i) * nCr(m, k - i) return int ( sum ) # Driver code if __name__ = = '__main__' : n = 3 m = 2 k = 2 ; print (solve(n, m, k)) # This code is contributed by jana_sayantan |
C#
// C# implementation of // the above approach using System; class GFG{ // Function returns nCr // i.e. Binomial Coefficient static int nCr( int n, int r) { // Initialize res with 1 int res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Function to calculate and // return the sum of the products static int solve( int n, int m, int k) { // Initialize sum to 0 int sum = 0; // Traverse from 0 to k for ( int i = 0; i <= k; i++) sum += nCr(n, i) * nCr(m, k - i); return sum; } // Driver Code public static void Main(String[] args) { int n = 3, m = 2, k = 2; Console.Write(solve(n, m, k)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program for the above approach // Function returns nCr // i.e. Binomial Coefficient function nCr(n, r) { // Initialize res with 1 let res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for (let i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Function to calculate and // return the sum of the products function solve(n, m, k) { // Initialize sum to 0 let sum = 0; // Traverse from 0 to k for (let i = 0; i <= k; i++) sum += nCr(n, i) * nCr(m, k - i); return sum; } // Driver Code let n = 3, m = 2, k = 2; document.write(solve(n, m, k)); </script> |
10
Time complexity: O(K2)
Auxiliary Space: O(1)
Efficient Approach:
The above approach can be optimized using Vandermonde’s Identity.
According to Vandermonde’s Identity, any combination of K items from a total of (N + M) items should have r items from M and (K – r) items from N items.
Therefore, the given expression is reduced to the following:
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; // Function returns nCr // i.e. Binomial Coefficient int nCr( int n, int r) { // Initialize res with 1 int res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Driver Code int main() { int n = 3, m = 2, k = 2; cout << nCr(n + m, k); return 0; } |
Java
// Java implementation of // the above approach import java.util.*; class GFG{ // Function returns nCr // i.e. Binomial Coefficient static int nCr( int n, int r) { // Initialize res with 1 int res = 1 ; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0 ; i < r; ++i) { res *= (n - i); res /= (i + 1 ); } return res; } // Driver Code public static void main(String[] args) { int n = 3 , m = 2 , k = 2 ; System.out.print(nCr(n + m, k)); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 implementation of # the above approach # Function returns nCr # i.e. Binomial Coefficient def nCr(n, r): # Initialize res with 1 res = 1 # Since C(n, r) = C(n, n-r) if (r > n - r): r = n - r # Evaluating expression for i in range (r): res * = (n - i) res / / = (i + 1 ) return res # Driver Code if __name__ = = '__main__' : n = 3 m = 2 k = 2 # Function call print (nCr(n + m, k)) # This code is contributed by Shivam Singh |
C#
// C# implementation of // the above approach using System; class GFG{ // Function returns nCr // i.e. Binomial Coefficient static int nCr( int n, int r) { // Initialize res with 1 int res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for ( int i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Driver Code public static void Main() { int n = 3, m = 2, k = 2; Console.Write(nCr(n + m, k)); } } // This code is contributed by Code_Mech |
Javascript
<script> // JavaScript implementation of the above approach // Function returns nCr // i.e. Binomial Coefficient function nCr(n, r) { // Initialize res with 1 let res = 1; // Since C(n, r) = C(n, n-r) if (r > n - r) r = n - r; // Evaluating expression for (let i = 0; i < r; ++i) { res *= (n - i); res /= (i + 1); } return res; } // Driver code let n = 3, m = 2, k = 2; document.write(nCr(n + m, k)); // This code is contributed by code_hunt. </script> |
10
Time Complexity: O(K)
Auxiliary Space: O(1)
Please Login to comment...