Sum of all elements up to Nth row in a Pascal triangle
Given a row number n, the task is to calculate the sum of all elements of each row up to nth row.
Examples:
Input : 2 Output : 7 Explanation: row 0 have element 1 row 1 have elements 1, 1 row 2 have elements 1, 2, 1 so, sum will be ((1) + (1 + 1) + (1 + 2 + 1)) = 7 Input : 4 Output : 31 Explanation: row 0 have element 1 row 1 have elements 1, 1 row 2 have elements 1, 2, 1 row 3 have elements 1, 3, 3, 1 row 4 have elements 1, 4, 6, 4, 1 so, sum will be ((1) + (1 + 1) + (1 + 2 + 1) + (1 + 3 + 3 + 1) + (1 + 4 + 6 + 4 + 1)) = 31
Below is the example of Pascal triangle having 11 rows:
Pascal's triangle 0th row 1 1st row 1 1 2nd row 1 2 1 3rd row 1 3 3 1 4th row 1 4 6 4 1 5th row 1 5 10 10 5 1 6th row 1 6 15 20 15 6 1 7th row 1 7 21 35 35 21 7 1 8th row 1 8 28 56 70 56 28 8 1 9th row 1 9 36 84 126 126 84 36 9 1 10th row 1 10 45 120 210 256 210 120 45 10 1
Naive Approach: In a Pascal triangle, each entry of a row is value of binomial coefficient. So a simple solution is to generating all row elements up to nth row and adding them. But this approach will have O(n3) time complexity. However, it can be optimized up to O(n2) time complexity. Refer the following article to generate elements of Pascal’s triangle:
Better Solution: Let’s have a look on pascal’s triangle pattern
sum of elements in ith row 0th row 1 1 -> 20 1st row 1 1 2 -> 21 2nd row 1 2 1 4 -> 22 3rd row 1 3 3 1 8 -> 23 4th row 1 4 6 4 1 16 -> 24 5th row 1 5 10 10 5 1 32 -> 25 6th row 1 6 15 20 15 6 1 64 -> 26 7th row 1 7 21 35 35 21 7 1 128 -> 27 8th row 1 8 28 56 70 56 28 8 1 256 -> 28 9th row 1 9 36 84 126 126 84 36 9 1 512 -> 29 10th row 1 10 45 120 210 256 210 120 45 10 1 1024 -> 210
As shown above, the sum of elements in the ith row is equal to 2i. Now it can be easily calculated the sum of all elements up to nth row by adding powers of 2.
Below is the implementation of above approach:
C++
// C++ program to find sum of all elements // upto nth row in Pascal triangle. #include <bits/stdc++.h> using namespace std; // Function to find sum of all elements // upto nth row. long long int calculateSum( int n) { // Initialize sum with 0 long long int sum = 0; // Loop to calculate power of 2 // upto n and add them for ( int row = 0; row < n; row++) { sum = sum + (1 << row); } return sum; } // Driver function int main() { int n = 10; cout << " Sum of all elements:" << calculateSum(n); return 0; } |
Java
// Java program to find sum of all elements // upto nth row in Pascal triangle. import java.io.*; class GFG { // Function to find sum of all elements // upto nth row. static long calculateSum( int n) { // Initialize sum with 0 long sum = 0 ; // Loop to calculate power of 2 // upto n and add them for ( int row = 0 ; row < n; row++) { sum = sum + ( 1 << row); } return sum; } // Driver code public static void main(String[] args) { int n = 10 ; System.out.println( "Sum of all elements:" + calculateSum(n)); } } |
Python3
# Python program to find sum of all elements # upto nth row in Pascal triangle. # Function to find sum of all elements # upto nth row. def calculateSum(n) : # Initialize sum with 0 sum = 0 # Loop to calculate power of 2 # upto n and add them for row in range (n): sum = sum + ( 1 << row) return sum # Driver code n = 10 print ( "Sum of all elements:" , calculateSum(n)) |
C#
// C# program to find sum of all elements // upto nth row in Pascal triangle. using System; public class GFG { // Function to find sum of all elements // upto nth row. static long calculateSum( int n) { // Initialize sum with 0 long sum = 0; // Loop to calculate power of 2 // upto n and add them for ( int row = 0; row < n; row++) { sum = sum + (1 << row); } return sum; } static public void Main() { int n = 10; Console.WriteLine( "Sum of all elements:" + calculateSum(n)); } } |
PHP
<?php // PHP program to find sum of // all elements upto nth row // in Pascal triangle. // Function to find sum of // all elements upto nth row. function calculateSum( $n ) { // Initialize sum with 0 $sum = 0; // Loop to calculate power // of 2 upto n and add them for ( $row = 0; $row < $n ; $row ++) { $sum = $sum + (1 << $row ); } return $sum ; } // Driver Code $n = 10; echo " Sum of all elements : " . calculateSum( $n ); // This code is contributed by Mahadev. ?> |
Javascript
<script> // Javascript program to find sum of // all elements upto nth row // in Pascal triangle. // Function to find sum of // all elements upto nth row. function calculateSum(n) { // Initialize sum with 0 let sum = 0; // Loop to calculate power // of 2 upto n and add them for (let row = 0; row < n; row++) { sum = sum + (1 << row); } return sum; } // Driver Code let n = 10; document.write( " Sum of all elements : " + calculateSum(n)); // This code is contributed by _saurabh_jaiswal. </script> |
Sum of all elements:1023
Time Complexity: O(n)
Auxiliary Space: O(1) as it is using constant space for variables
Efficient solution:
2n can be expressed as
2n = ( 20 + 21 + 22 + 23 +. . . + 2(n-1) ) + 1
For Example:
26 = ( 20 + 21 + 22 + 23 + 24 + 25 ) + 1
64 = ( 1 + 2 + 4 + 8 +16 + 32 ) + 1
64 = 63 + 1
So, calculate 2n instead of calculating every power of 2 up to (n – 1) and from above example the sum of the power of 2 up to (n – 1) will be (2n – 1).
C++
// C++ program to find sum of all elements // upto nth row in Pascal triangle. #include <bits/stdc++.h> using namespace std; // Function to find sum of all elements // upto nth row. long long int calculateSum( int n) { // Initialize sum with 0 long long int sum = 0; // Calculate 2^n sum = 1 << n; return (sum - 1); } // Driver function int main() { int n = 10; cout << " Sum of all elements:" << calculateSum(n); return 0; } |
Java
// Java program to find sum of all elements // upto nth row in Pascal triangle. import java.io.*; class GFG { // Function to find sum of all elements // upto nth row. static long calculateSum( int n) { // Initialize sum with 0 long sum = 0 ; // Calculate 2^n sum = 1 << n; return (sum - 1 ); } // Driver code public static void main(String[] args) { int n = 10 ; System.out.println( "Sum of all elements:" + calculateSum(n)); } } |
Python3
# Python3 program to find sum of all elements # upto nth row in Pascal triangle. # Function to find sum of all elements # upto nth row. def calculateSum(n) : # Initialize sum with 0 sum = 0 # Calculate 2 ^ n sum = 1 << n; return ( sum - 1 ) # Driver unicode n = 10 print ( "Sum of all elements:" , calculateSum(n)) |
C#
// C# program to find sum of all elements // upto nth row in Pascal triangle. using System; public class GFG { // Function to find sum of all elements // upto nth row. static long calculateSum( int n) { // Initialize sum with 0 long sum = 0; // Calculate 2^n sum = 1 << n; return (sum - 1); } // Driver code static public void Main() { int n = 10; Console.WriteLine( "Sum of all elements:" + calculateSum(n)); } } |
PHP
<?php // PHP program to find sum // of all elements upto nth // row in Pascal triangle. // Function to find // sum of all elements // upto nth row. function calculateSum( $n ) { // Initialize sum with 0 $sum = 0; // Calculate 2^n $sum = 1 << $n ; return ( $sum - 1); } // Driver Code $n = 10; echo " Sum of all elements:" , calculateSum( $n ); // This code is contributed // by akt_mit ?> |
Javascript
// Javascript program to find sum // of all elements upto nth // row in Pascal triangle. // Function to find // sum of all elements // upto nth row. function calculateSum(n) { // Initialize sum with 0 sum = 0; // Calculate 2^n sum = 1 << n; return (sum - 1); } // Driver Code let n = 10; document.write( " Sum of all elements:" + calculateSum(n)); // This code is contributed _saurabh_jaiswal |
Sum of all elements:1023
Time Complexity: O(1)
Auxiliary Space: O(1) because constant space has been used
Please Login to comment...