Sum of nodes on the longest path from root to leaf node
Given a binary tree containing n nodes. The problem is to find the sum of all nodes on the longest path from root to leaf node. If two or more paths compete for the longest path, then the path having maximum sum of nodes is being considered.
Examples:
Input : Binary tree: 4 / \ 2 5 / \ / \ 7 1 2 3 / 6 Output : 13 4 / \ 2 5 / \ / \ 7 1 2 3 / 6 The highlighted nodes (4, 2, 1, 6) above are part of the longest root to leaf path having sum = (4 + 2 + 1 + 6) = 13
Approach: Recursively find the length and sum of nodes of each root to leaf path and accordingly update the maximum sum.
Algorithm:
sumOfLongRootToLeafPath(root, sum, len, maxLen, maxSum) if root == NULL if maxLen < len maxLen = len maxSum = sum else if maxLen == len && maxSum is less than sum maxSum = sum return sumOfLongRootToLeafPath(root-left, sum + root-data, len + 1, maxLen, maxSum) sumOfLongRootToLeafPath(root-right, sum + root-data, len + 1, maxLen, maxSum) sumOfLongRootToLeafPathUtil(root) if (root == NULL) return 0 Declare maxSum = Minimum Integer Declare maxLen = 0 sumOfLongRootToLeafPath(root, 0, 0, maxLen, maxSum) return maxSum
C++
// C++ implementation to find the sum of nodes // on the longest path from root to leaf node #include <bits/stdc++.h> using namespace std; // Node of a binary tree struct Node { int data; Node* left, *right; }; // function to get a new node Node* getNode( int data) { // allocate memory for the node Node* newNode = (Node*) malloc ( sizeof (Node)); // put in the data newNode->data = data; newNode->left = newNode->right = NULL; return newNode; } // function to find the sum of nodes on the // longest path from root to leaf node void sumOfLongRootToLeafPath(Node* root, int sum, int len, int & maxLen, int & maxSum) { // if true, then we have traversed a // root to leaf path if (!root) { // update maximum length and maximum sum // according to the given conditions if (maxLen < len) { maxLen = len; maxSum = sum; } else if (maxLen == len && maxSum < sum) maxSum = sum; return ; } // recur for left subtree sumOfLongRootToLeafPath(root->left, sum + root->data, len + 1, maxLen, maxSum); // recur for right subtree sumOfLongRootToLeafPath(root->right, sum + root->data, len + 1, maxLen, maxSum); } // utility function to find the sum of nodes on // the longest path from root to leaf node int sumOfLongRootToLeafPathUtil(Node* root) { // if tree is NULL, then sum is 0 if (!root) return 0; int maxSum = INT_MIN, maxLen = 0; // finding the maximum sum 'maxSum' for the // maximum length root to leaf path sumOfLongRootToLeafPath(root, 0, 0, maxLen, maxSum); // required maximum sum return maxSum; } // Driver program to test above int main() { // binary tree formation Node* root = getNode(4); /* 4 */ root->left = getNode(2); /* / \ */ root->right = getNode(5); /* 2 5 */ root->left->left = getNode(7); /* / \ / \ */ root->left->right = getNode(1); /* 7 1 2 3 */ root->right->left = getNode(2); /* / */ root->right->right = getNode(3); /* 6 */ root->left->right->left = getNode(6); cout << "Sum = " << sumOfLongRootToLeafPathUtil(root); return 0; } |
Java
// Java implementation to find the sum of nodes // on the longest path from root to leaf node public class GFG { // Node of a binary tree static class Node { int data; Node left, right; Node( int data){ this .data = data; left = null ; right = null ; } } static int maxLen; static int maxSum; // function to find the sum of nodes on the // longest path from root to leaf node static void sumOfLongRootToLeafPath(Node root, int sum, int len) { // if true, then we have traversed a // root to leaf path if (root == null ) { // update maximum length and maximum sum // according to the given conditions if (maxLen < len) { maxLen = len; maxSum = sum; } else if (maxLen == len && maxSum < sum) maxSum = sum; return ; } // recur for left subtree sumOfLongRootToLeafPath(root.left, sum + root.data, len + 1 ); sumOfLongRootToLeafPath(root.right, sum + root.data, len + 1 ); } // utility function to find the sum of nodes on // the longest path from root to leaf node static int sumOfLongRootToLeafPathUtil(Node root) { // if tree is NULL, then sum is 0 if (root == null ) return 0 ; maxSum = Integer.MIN_VALUE; maxLen = 0 ; // finding the maximum sum 'maxSum' for the // maximum length root to leaf path sumOfLongRootToLeafPath(root, 0 , 0 ); // required maximum sum return maxSum; } // Driver program to test above public static void main(String args[]) { // binary tree formation Node root = new Node( 4 ); /* 4 */ root.left = new Node( 2 ); /* / \ */ root.right = new Node( 5 ); /* 2 5 */ root.left.left = new Node( 7 ); /* / \ / \ */ root.left.right = new Node( 1 ); /* 7 1 2 3 */ root.right.left = new Node( 2 ); /* / */ root.right.right = new Node( 3 ); /* 6 */ root.left.right.left = new Node( 6 ); System.out.println( "Sum = " + sumOfLongRootToLeafPathUtil(root)); } } // This code is contributed by Sumit Ghosh |
Python3
# Python3 implementation to find the # Sum of nodes on the longest path # from root to leaf nodes # function to get a new node class getNode: def __init__( self , data): # put in the data self .data = data self .left = self .right = None # function to find the Sum of nodes on the # longest path from root to leaf node def SumOfLongRootToLeafPath(root, Sum , Len , maxLen, maxSum): # if true, then we have traversed a # root to leaf path if ( not root): # update maximum Length and maximum Sum # according to the given conditions if (maxLen[ 0 ] < Len ): maxLen[ 0 ] = Len maxSum[ 0 ] = Sum else if (maxLen[ 0 ] = = Len and maxSum[ 0 ] < Sum ): maxSum[ 0 ] = Sum return # recur for left subtree SumOfLongRootToLeafPath(root.left, Sum + root.data, Len + 1 , maxLen, maxSum) # recur for right subtree SumOfLongRootToLeafPath(root.right, Sum + root.data, Len + 1 , maxLen, maxSum) # utility function to find the Sum of nodes on # the longest path from root to leaf node def SumOfLongRootToLeafPathUtil(root): # if tree is NULL, then Sum is 0 if ( not root): return 0 maxSum = [ - 999999999999 ] maxLen = [ 0 ] # finding the maximum Sum 'maxSum' for # the maximum Length root to leaf path SumOfLongRootToLeafPath(root, 0 , 0 , maxLen, maxSum) # required maximum Sum return maxSum[ 0 ] # Driver Code if __name__ = = '__main__' : # binary tree formation root = getNode( 4 ) # 4 root.left = getNode( 2 ) # / \ root.right = getNode( 5 ) # 2 5 root.left.left = getNode( 7 ) # / \ / \ root.left.right = getNode( 1 ) # 7 1 2 3 root.right.left = getNode( 2 ) # / root.right.right = getNode( 3 ) # 6 root.left.right.left = getNode( 6 ) print ( "Sum = " , SumOfLongRootToLeafPathUtil(root)) # This code is contributed by PranchalK |
C#
using System; // c# implementation to find the sum of nodes // on the longest path from root to leaf node public class GFG { // Node of a binary tree public class Node { public int data; public Node left, right; public Node( int data) { this .data = data; left = null ; right = null ; } } public static int maxLen; public static int maxSum; // function to find the sum of nodes on the // longest path from root to leaf node public static void sumOfLongRootToLeafPath(Node root, int sum, int len) { // if true, then we have traversed a // root to leaf path if (root == null ) { // update maximum length and maximum sum // according to the given conditions if (maxLen < len) { maxLen = len; maxSum = sum; } else if (maxLen == len && maxSum < sum) { maxSum = sum; } return ; } // recur for left subtree sumOfLongRootToLeafPath(root.left, sum + root.data, len + 1); sumOfLongRootToLeafPath(root.right, sum + root.data, len + 1); } // utility function to find the sum of nodes on // the longest path from root to leaf node public static int sumOfLongRootToLeafPathUtil(Node root) { // if tree is NULL, then sum is 0 if (root == null ) { return 0; } maxSum = int .MinValue; maxLen = 0; // finding the maximum sum 'maxSum' for the // maximum length root to leaf path sumOfLongRootToLeafPath(root, 0, 0); // required maximum sum return maxSum; } // Driver program to test above public static void Main( string [] args) { // binary tree formation Node root = new Node(4); // 4 root.left = new Node(2); // / \ root.right = new Node(5); // 2 5 root.left.left = new Node(7); // / \ / \ root.left.right = new Node(1); // 7 1 2 3 root.right.left = new Node(2); // / root.right.right = new Node(3); // 6 root.left.right.left = new Node(6); Console.WriteLine( "Sum = " + sumOfLongRootToLeafPathUtil(root)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // javascript implementation to find the sum of nodes // on the longest path from root to leaf node // Node of a binary tree class Node { constructor(val) { this .data = val; this .left = null ; this .right = null ; } } var maxLen; var maxSum; // function to find the sum of nodes on the // longest path from root to leaf node function sumOfLongRootToLeafPath(root , sum, len) { // if true, then we have traversed a // root to leaf path if (root == null ) { // update maximum length and maximum sum // according to the given conditions if (maxLen < len) { maxLen = len; maxSum = sum; } else if (maxLen == len && maxSum < sum) maxSum = sum; return ; } // recur for left subtree sumOfLongRootToLeafPath(root.left, sum + root.data, len + 1); sumOfLongRootToLeafPath(root.right, sum + root.data, len + 1); } // utility function to find the sum of nodes on // the longest path from root to leaf node function sumOfLongRootToLeafPathUtil(root) { // if tree is NULL, then sum is 0 if (root == null ) return 0; maxSum = Number.MIN_VALUE; maxLen = 0; // finding the maximum sum 'maxSum' for the // maximum length root to leaf path sumOfLongRootToLeafPath(root, 0, 0); // required maximum sum return maxSum; } // Driver program to test above // binary tree formation var root = new Node(4); /* 4 */ root.left = new Node(2); /* / \ */ root.right = new Node(5); /* 2 5 */ root.left.left = new Node(7); /* / \ / \ */ root.left.right = new Node(1); /* 7 1 2 3 */ root.right.left = new Node(2); /* / */ root.right.right = new Node(3); /* 6 */ root.left.right.left = new Node(6); document.write( "Sum = " + sumOfLongRootToLeafPathUtil(root)); // This code is contributed by gauravrajput1 </script> |
Sum = 13
Time Complexity: O(n)
Auxiliary Space: O(h) where h is the height of the binary tree.
Another Approach: Using level order traversal
- Create a structure containing the current Node, level and sum in the path.
- Push the root element with level 0 and sum as the root’s data.
- Pop the front element and update the maximum level sum and maximum level if needed.
- Push the left and right nodes if exists.
- Do the same for all the nodes in tree.
C++
#include <bits/stdc++.h> using namespace std; //Building a tree node having left and right pointers set to null initially struct Node { Node* left; Node* right; int data; //constructor to set the data of the newly created tree node Node( int element){ data = element; this ->left = nullptr; this ->right = nullptr; } }; int longestPathLeaf(Node* root){ /* structure to store current Node,it's level and sum in the path*/ struct Element{ Node* data; int level; int sum; }; /* maxSumLevel stores maximum sum so far in the path maxLevel stores maximum level so far */ int maxSumLevel = root->data,maxLevel = 0; /* queue to implement level order traversal */ list<Element> que; Element e; /* Each element variable stores the current Node, it's level, sum in the path */ e.data = root; e.level = 0; e.sum = root->data; /* push the root element*/ que.push_back(e); /* do level order traversal on the tree*/ while (!que.empty()){ Element front = que.front(); Node* curr = front.data; que.pop_front(); /* if the level of current front element is greater than the maxLevel so far then update maxSum*/ if (front.level > maxLevel){ maxSumLevel = front.sum; maxLevel = front.level; } /* if another path competes then update if the sum is greater than the previous path of same height*/ else if (front.level == maxLevel && front.sum > maxSumLevel) maxSumLevel = front.sum; /* push the left element if exists*/ if (curr->left){ e.data = curr->left; e.sum = e.data->data; e.sum += front.sum; e.level = front.level+1; que.push_back(e); } /*push the right element if exists*/ if (curr->right){ e.data = curr->right; e.sum = e.data->data; e.sum += front.sum; e.level = front.level+1; que.push_back(e); } } /*return the answer*/ return maxSumLevel; } //Helper function int main() { Node* root = new Node(4); root->left = new Node(2); root->right = new Node(5); root->left->left = new Node(7); root->left->right = new Node(1); root->right->left = new Node(2); root->right->right = new Node(3); root->left->right->left = new Node(6); cout << longestPathLeaf(root) << "\n" ; return 0; } |
Java
// Java Code to find sum of nodes on the longest path from // root to leaf node using level order traversal import java.util.*; // Building a tree node having left and right pointers set // to null initially class Main { static class Node { Node left; Node right; int data; // constructor to set the data of the newly created // tree node Node( int element) { data = element; this .left = null ; this .right = null ; } } /* structure to store current Node,it's level and sum in * the path*/ static class Element { Node data; int level; int sum; } public static int longestPathLeaf(Node root) { /* maxSumLevel stores maximum sum so far in the path maxLevel stores maximum level so far */ int maxSumLevel = root.data; int maxLevel = 0 ; /* queue to implement level order traversal */ Queue<Element> que = new LinkedList<>(); Element e = new Element(); /* Each element variable stores the current Node, * it's level, sum in the path */ e.data = root; e.level = 0 ; e.sum = root.data; /* push the root element*/ que.add(e); /* do level order traversal on the tree*/ while (!que.isEmpty()) { Element front = que.poll(); Node curr = front.data; /* if the level of current front element is * greater than the maxLevel so far then update * maxSum*/ if (front.level > maxLevel) { maxSumLevel = front.sum; maxLevel = front.level; } /* if another path competes then update if the * sum is greater than the previous path of same * height*/ else if (front.level == maxLevel && front.sum > maxSumLevel) { maxSumLevel = front.sum; } /* push the left element if exists*/ if (curr.left != null ) { e = new Element(); e.data = curr.left; e.sum = e.data.data; e.sum += front.sum; e.level = front.level + 1 ; que.add(e); } /*push the right element if exists*/ if (curr.right != null ) { e = new Element(); e.data = curr.right; e.sum = e.data.data; e.sum += front.sum; e.level = front.level + 1 ; que.add(e); } } /*return the answer*/ return maxSumLevel; } // Helper function public static void main(String[] args) { Node root = new Node( 4 ); root.left = new Node( 2 ); root.right = new Node( 5 ); root.left.left = new Node( 7 ); root.left.right = new Node( 1 ); root.right.left = new Node( 2 ); root.right.right = new Node( 3 ); root.left.right.left = new Node( 6 ); System.out.println(longestPathLeaf(root)); } } // This code is contributed by Tapesh(tapeshdua420) |
Python3
# Python Code to find sum of nodes on the longest path from root to leaf node # using level order traversal # Building a tree node having left and right pointers set to null initially class Node: def __init__( self , element): self .data = element self .left = None self .right = None # To store current Node,it's level and sum in the path class Element: def __init__( self , data, level, sum ): self .data = data self .level = level self . sum = sum class Solution: def longestPathLeaf( self , root): # maxSumLevel stores maximum sum so far in the path # maxLevel stores maximum level so far maxSumLevel = root.data maxLevel = 0 # queue to implement level order traversal que = [] # Each element variable stores the current Node, it's level, sum in the path e = Element(root, 0 , root.data) # push the root element que.append(e) # do level order traversal on the tree while len (que) ! = 0 : front = que[ 0 ] curr = front.data del que[ 0 ] # if the level of current front element is greater than the maxLevel so far then update maxSum if front.level > maxLevel: maxSumLevel = front. sum maxLevel = front.level # if another path competes then update if the sum is greater than the previous path of same height elif front.level = = maxLevel and front. sum > maxSumLevel: maxSumLevel = front. sum # push the left element if exists if curr.left ! = None : e = Element(curr.left, front.level + 1 , curr.left.data + front. sum ) que.append(e) # push the right element if exists if curr.right ! = None : e = Element(curr.right, front.level + 1 , curr.right.data + front. sum ) que.append(e) # return the answer return maxSumLevel # Helper function if __name__ = = '__main__' : s = Solution() root = Node( 4 ) root.left = Node( 2 ) root.right = Node( 5 ) root.left.left = Node( 7 ) root.left.right = Node( 1 ) root.right.left = Node( 2 ) root.right.right = Node( 3 ) root.left.right.left = Node( 6 ) print (s.longestPathLeaf(root)) # This code is contributed by Tapesh(tapeshdua420) |
C#
// C# program to find sum of nodes on the longest path from // root to leaf node using level order traversal using System; using System.Collections; // Building a tree node having left and right pointers set // to null initially class Node { public Node left; public Node right; public int data; // constructor to set the data of the newly created // tree node public Node( int element) { data = element; this .left = null ; this .right = null ; } } /* structure to store current Node,it's level and sum in * the path*/ class Element { public Node data; public int level; public int sum; } class GFG { public static int longestPathLeaf(Node root) { /* maxSumLevel stores maximum sum so far in the path maxLevel stores maximum level so far */ int maxSumLevel = root.data; int maxLevel = 0; /* queue to implement level order traversal */ Queue que = new Queue(); Element e = new Element(); /* Each element variable stores the current Node, * it's level, sum in the path */ e.data = root; e.level = 0; e.sum = root.data; /* push the root element*/ que.Enqueue(e); /* do level order traversal on the tree*/ while (que.Count != 0) { dynamic front = que.Dequeue(); Node curr = front.data; /* if the level of current front element is * greater than the maxLevel so far then update * maxSum*/ if (front.level > maxLevel) { maxSumLevel = front.sum; maxLevel = front.level; } /* if another path competes then update if the * sum is greater than the previous path of same * height*/ else if (front.level == maxLevel && front.sum > maxSumLevel) { maxSumLevel = front.sum; } /* push the left element if exists*/ if (curr.left != null ) { e = new Element(); e.data = curr.left; e.sum = e.data.data; e.sum += front.sum; e.level = front.level + 1; que.Enqueue(e); } /*push the right element if exists*/ if (curr.right != null ) { e = new Element(); e.data = curr.right; e.sum = e.data.data; e.sum += front.sum; e.level = front.level + 1; que.Enqueue(e); } } /*return the answer*/ return maxSumLevel; } // Helper function public static void Main( string [] args) { Node root = new Node(4); root.left = new Node(2); root.right = new Node(5); root.left.left = new Node(7); root.left.right = new Node(1); root.right.left = new Node(2); root.right.right = new Node(3); root.left.right.left = new Node(6); Console.WriteLine(longestPathLeaf(root)); } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
// Javascript code to find sum of nodes on the longest path from root to leaf node // using level order traversal class Node { constructor(element) { this .data = element; this .left = null ; this .right = null ; } } class Element { constructor(data, level, sum) { this .data = data; this .level = level; this .sum = sum; } } class Solution { longestPathLeaf(root) { // maxSumLevel stores maximum sum so far in the path // maxLevel stores maximum level so far let maxSumLevel = root.data; let maxLevel = 0; // queue to implement level order traversal let que = []; // Each element variable stores the current Node, it's level, sum in the path let e = new Element(root, 0, root.data); // push the root element que.push(e); // do level order traversal on the tree while (que.length !== 0) { let front = que[0]; let curr = front.data; que.shift(); // if the level of current front element is greater than the maxLevel so far then update maxSum if (front.level > maxLevel) { maxSumLevel = front.sum; maxLevel = front.level; } // if another path competes then update if the sum is greater than the previous path of same height else if (front.level === maxLevel && front.sum > maxSumLevel) { maxSumLevel = front.sum; } // push the left element if exists if (curr.left !== null ) { e = new Element(curr.left, front.level + 1, curr.left.data + front.sum); que.push(e); } // push the right element if exists if (curr.right !== null ) { e = new Element(curr.right, front.level + 1, curr.right.data + front.sum); que.push(e); } } // return the answer return maxSumLevel; } } // Helper function const s = new Solution(); const root = new Node(4); root.left = new Node(2); root.right = new Node(5); root.left.left = new Node(7); root.left.right = new Node(1); root.right.left = new Node(2); root.right.right = new Node(3); root.left.right.left = new Node(6); console.log(s.longestPathLeaf(root)); |
13
Time Complexity: O(N)
Auxiliary Space: O(N)
Contributed by Manjukrishna
Using Breadth-First Search (BFS):
In this approach, we perform a BFS on the tree and keep track of the maximum depth and the sum of nodes at that depth. We can calculate the sum of longest bloodline by adding the maximum depth to the sum of nodes at that depth.
Follow the steps below to implement the above approach:
- Initialize a variable max_sum to the minimum integer value.
- Create an empty queue for BFS traversal.
- Enqueue the root node to the queue.
- While the queue is not empty, do the following:
a. Initialize a variable level_sum to 0.
b. Get the number of nodes in the current level.
c. For each node in the current level, do the following:
i. Dequeue a node from the queue.
ii. Add the node’s data to the level_sum.
iii. Enqueue the left child of the node to the queue if it exists.
iv. Enqueue the right child of the node to the queue if it exists.
d. Update the max_sum with the level_sum if it’s greater. - Return the max_sum
Below is the implementation of the above approach:
C++
// C++ code to implement BFS approach #include <bits/stdc++.h> using namespace std; // Define a struct to represent a node of the tree struct Node { int data; Node* left; Node* right; }; // Function to create a new node with the given data Node* newNode( int data) { Node* node = new Node; node->data = data; node->left = NULL; node->right = NULL; return node; } // Function to perform BFS on the tree and calculate the sum of longest bloodline int bfs(Node* root) { int max_sum = INT_MIN; // Initialize max_sum to the minimum integer value queue<Node*> q; // Create an empty queue for BFS traversal q.push(root); // Enqueue the root node while (!q.empty()) { int level_sum = 0; // Initialize the level_sum to 0 int n = q.size(); // Get the number of nodes in the current level for ( int i = 0; i < n; i++) { Node* node = q.front(); // Dequeue a node from the queue q.pop(); level_sum += node->data; // Add the node's data to the level_sum if (node->left) q.push(node->left); // Enqueue the left child of the node if it exists if (node->right) q.push(node->right); // Enqueue the right child of the node if it exists } max_sum = max(max_sum, level_sum); // Update the max_sum with the level_sum if it's greater } return max_sum; // Return the max_sum } // Driver code int main() { // Create the tree Node* root = newNode(4); root->left = newNode(2); root->right = newNode(5); root->left->left = newNode(7); root->left->right = newNode(1); root->right->left = newNode(2); root->right->right = newNode(3); root->left->right->left = newNode(6); // Calculate the sum of longest bloodline using BFS int sum = bfs(root); // Print the result cout << sum << endl; return 0; } // This code is contributed by Veerendra_Singh_Rajpoot |
Python3
from collections import deque # Define a class to represent a node of the tree class Node: def __init__( self , data): self .data = data self .left = None self .right = None # Function to perform BFS on the tree and calculate the sum of longest bloodline def bfs(root): max_sum = float ( '-inf' ) # Initialize max_sum to negative infinity q = deque() # Create an empty queue for BFS traversal q.append(root) # Enqueue the root node while q: level_sum = 0 # Initialize the level_sum to 0 n = len (q) # Get the number of nodes in the current level for i in range (n): node = q.popleft() # Dequeue a node from the queue level_sum + = node.data # Add the node's data to the level_sum if node.left: q.append(node.left) # Enqueue the left child of the node if it exists if node.right: q.append(node.right) # Enqueue the right child of the node if it exists max_sum = max (max_sum, level_sum) # Update the max_sum with the level_sum if it's greater return max_sum # Return the max_sum # Driver code if __name__ = = '__main__' : # Create the tree root = Node( 4 ) root.left = Node( 2 ) root.right = Node( 5 ) root.left.left = Node( 7 ) root.left.right = Node( 1 ) root.right.left = Node( 2 ) root.right.right = Node( 3 ) root.left.right.left = Node( 6 ) # Calculate the sum of longest bloodline using BFS sum = bfs(root) # Print the result print ( sum ) |
Javascript
// Define a class to represent a node of the tree class Node { constructor(data) { this .data = data; this .left = null ; this .right = null ; } } // Function to perform BFS on the tree and calculate the sum of longest bloodline function bfs(root) { let max_sum = Number.MIN_SAFE_INTEGER; // Initialize max_sum to the minimum safe integer value let q = []; // Create an empty queue for BFS traversal q.push(root); // Enqueue the root node while (q.length > 0) { let level_sum = 0; // Initialize the level_sum to 0 let n = q.length; // Get the number of nodes in the current level for (let i = 0; i < n; i++) { let node = q.shift(); // Dequeue a node from the queue level_sum += node.data; // Add the node's data to the level_sum if (node.left) q.push(node.left); // Enqueue the left child of the node if it exists if (node.right) q.push(node.right); // Enqueue the right child of the node if it exists } max_sum = Math.max(max_sum, level_sum); // Update the max_sum with the level_sum if it's greater } return max_sum; // Return the max_sum } // Create the tree let root = new Node(4); root.left = new Node(2); root.right = new Node(5); root.left.left = new Node(7); root.left.right = new Node(1); root.right.left = new Node(2); root.right.right = new Node(3); root.left.right.left = new Node(6); // Calculate the sum of longest bloodline using BFS let sum = bfs(root); // Print the result console.log(sum); |
13
Time Complexity: O(N), where N is the number of nodes in the tree.
Space Complexity: O(W), where W is the maximum width of the tree (queue size).
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...