Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sum of Binomial coefficients

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a positive integer n, the task is to find the sum of binomial coefficient i.e
nC0 + nC1 + nC2 + ……. + nCn-1 + nCn
Examples: 
 

Input : n = 4
Output : 16
4C0 + 4C1 + 4C2 + 4C3 + 4C4
= 1 + 4 + 6 + 4 + 1
= 16

Input : n = 5
Output : 32

 

Method 1 (Brute Force): 
The idea is to evaluate each binomial coefficient term i.e nCr, where 0 <= r <= n and calculate the sum of all the terms.
Below is the implementation of this approach: 
 

C++




// CPP Program to find the sum of Binomial
// Coefficient.
#include <bits/stdc++.h>
using namespace std;
 
// Returns value of Binomial Coefficient Sum
int binomialCoeffSum(int n)
{
    int C[n + 1][n + 1];
 
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= min(i, n); j++) {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
 
    // Calculating the sum.
    int sum = 0;
    for (int i = 0; i <= n; i++)
        sum += C[n][i];
 
    return sum;
}
 
/* Driver program to test above function*/
int main()
{
    int n = 4;
    printf("%d", binomialCoeffSum(n));
    return 0;
}


Java




// Java Program to find the sum
// of Binomial Coefficient.
 
class GFG {
     
    // Returns value of Binomial
    // Coefficient Sum
    static int binomialCoeffSum(int n)
    {
        int C[][] = new int[n + 1][n + 1];
     
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; j <= Math.min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
     
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
             
                 
            }
        }
     
        // Calculating the sum.
        int sum = 0;
        for (int i = 0; i <= n; i++)
            sum += C[n][i];
     
        return sum;
    }
     
    /* Driver program to test above function*/
    public static void main(String[] args)
    {
        int n = 4;
        System.out.println(binomialCoeffSum(n));
    }
}
 
// This code is contributed by prerna saini.


Python3




# Python  Program to find the sum
# of Binomial Coefficient.
  
import math   
  
# Returns value of Binomial
# Coefficient Sum
def binomialCoeffSum( n):
     
        C = [[0]*(n+2) for i in range(0,n+2)]
      
        # Calculate value of Binomial
        # Coefficient in bottom up manner
        for i in range(0,n+1):
            for j in range(0, min(i, n)+1):
             
                # Base Cases
                if (j == 0 or j == i):
                    C[i][j] = 1
      
                # Calculate value using previously
                # stored values
                else:
                    C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
      
        # Calculating the sum.
        sum = 0
        for i in range(0,n+1):
            sum += C[n][i]
      
        return sum
     
      
# Driver program to test above function
n = 4
print(binomialCoeffSum(n))
 
# This code is contributed by Gitanjali.


C#




// C# program to find the sum
// of Binomial Coefficient.
using System;
 
class GFG {
 
    // Returns value of Binomial
    // Coefficient Sum
    static int binomialCoeffSum(int n)
    {
        int[, ] C = new int[n + 1, n + 1];
 
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; j <= Math.Min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i, j] = 1;
 
                // Calculate value using previously
                // stored values
                else
                    C[i, j] = C[i - 1, j - 1] + C[i - 1, j];
            }
        }
 
        // Calculating the sum.
        int sum = 0;
        for (int i = 0; i <= n; i++)
            sum += C[n, i];
 
        return sum;
    }
 
    /* Driver program to test above function*/
    public static void Main()
    {
        int n = 4;
        Console.WriteLine(binomialCoeffSum(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP Program to find the
// sum of Binomial Coefficient.
// Returns value of Binomial
// Coefficient Sum
 
function binomialCoeffSum($n)
{
    $C[$n + 1][$n + 1] = array(0);
 
    // Calculate value of
    // Binomial Coefficient
    // in bottom up manner
    for ($i = 0; $i <= $n; $i++)
    {
        for ($j = 0;
             $j <= min($i, $n); $j++)
        {
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
 
            // Calculate value
            // using previously
            // stored values
            else
                $C[$i][$j] = $C[$i - 1][$j - 1] +
                             $C[$i - 1][$j];
        }
    }
 
    // Calculating the sum.
    $sum = 0;
    for ($i = 0; $i <= $n; $i++)
        $sum += $C[$n][$i];
 
    return $sum;
}
 
// Driver Code
$n = 4;
echo binomialCoeffSum($n);
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// JavaScript Program to find the sum
// of Binomial Coefficient.
 
    // Returns value of Binomial
    // Coefficient Sum
    function binomialCoeffSum(n)
    {
        let C = new Array(n + 1);
         
        // Loop to create 2D array using 1D array
        for (var i = 0; i < C.length; i++) {
            C[i] = new Array(2);
        }
       
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (let i = 0; i <= n; i++)
        {
            for (let j = 0; j <= Math.min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
       
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
               
                   
            }
        }
       
        // Calculating the sum.
        let sum = 0;
        for (let i = 0; i <= n; i++)
            sum += C[n][i];
       
        return sum;
    }
 
// Driver code
         
        let n = 4;
        document.write(binomialCoeffSum(n));
                   
</script>


Output: 

16

Method 2 (Using Formula): 
 

This can be proved in 2 ways. 
First Proof: Using Principle of induction.
 

For basic step, n = 0 
LHS = 0C0 = (0!)/(0! * 0!) = 1/1 = 1. 
RHS= 20 = 1. 
LHS = RHS
For induction step: 
Let k be an integer such that k > 0 and for all r, 0 <= r <= k, where r belong to integers, 
the formula stand true. 
Therefore, 
kC0 + kC1 + kC2 + ……. + kCk-1 + kCk = 2k
Now, we have to prove for n = k + 1, 
k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1 = 2k+1
LHS = k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1 
(Using nC0 = 0 and n+1Cr = nCr + nCr-1
= 1 + kC0 + kC1 + kC1 + kC2 + …… + kCk-1 + kCk + 1 
= kC0 + kC0 + kC1 + kC1 + …… + kCk-1 + kCk-1 + kCk + kCk 
= 2 X ∑ nCr 
= 2 X 2k 
= 2k+1 
= RHS

Second Proof: Using Binomial theorem expansion 
 

Binomial expansion state, 
(x + y)n = nC0 xn y0 + nC1 xn-1 y1 + nC2 xn-2 y2 + ……… + nCn-1 x1 yn-1 + nCn x0 yn
Put x = 1, y = 1 
(1 + 1)n = nC0 1n 10 + nC1 xn-1 11 + nC2 1n-2 12 + ……… + nCn-1 11 1n-1 + nCn 10 1n
2n = nC0 + nC1 + nC2 + ……. + nCn-1 + nCn

Below is implementation of this approach: 
 

C++




// CPP Program to find sum of Binomial
// Coefficient.
#include <bits/stdc++.h>
using namespace std;
 
// Returns value of Binomial Coefficient Sum
// which is 2 raised to power n.
int binomialCoeffSum(int n)
{
    return (1 << n);
}
 
/* Driver program to test above function*/
int main()
{
    int n = 4;
    printf("%d", binomialCoeffSum(n));
    return 0;
}


Java




// Java Program to find sum
// of Binomial Coefficient.
import java.io.*;
 
class GFG
{
    // Returns value of Binomial
    // Coefficient Sum which is
    // 2 raised to power n.
    static int binomialCoeffSum(int n)
    {
        return (1 << n);
    }
 
    // Driver Code
    public static void main (String[] args)
    {
        int n = 4;
        System.out.println(binomialCoeffSum(n));
    }
}
 
// This code is contributed
// by akt_mit.


Python3




# Python  Program to find the sum
# of Binomial Coefficient.
  
import math    
# Returns value of Binomial
# Coefficient Sum
def binomialCoeffSum( n):
     
    return (1 << n);
 
# Driver program to test
# above function
n = 4
print(binomialCoeffSum(n))
 
# This code is contributed
# by Gitanjali.


C#




// C# Program to find sum of
// Binomial Coefficient.
using System;
 
class GFG {
 
    // Returns value of Binomial Coefficient Sum
    // which is 2 raised to power n.
    static int binomialCoeffSum(int n)
    {
        return (1 << n);
    }
 
    /* Driver program to test above function*/
    static public void Main()
    {
        int n = 4;
        Console.WriteLine(binomialCoeffSum(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP Program to find sum
// of Binomial Coefficient.
 
// Returns value of Binomial
// Coefficient Sum which is
// 2 raised to power n.
function binomialCoeffSum($n)
{
    return (1 << $n);
}
 
// Driver Code
$n = 4;
echo binomialCoeffSum($n);
 
// This code is contributed
// by akt_mit
?>


Javascript




<script>
    // Javascript Program to find sum of Binomial Coefficient.
     
    // Returns value of Binomial Coefficient Sum
    // which is 2 raised to power n.
    function binomialCoeffSum(n)
    {
        return (1 << n);
    }
     
    let n = 4;
      document.write(binomialCoeffSum(n));
     
</script>


Output: 
 

16

 


My Personal Notes arrow_drop_up
Last Updated : 30 Apr, 2021
Like Article
Save Article
Similar Reads
Related Tutorials