Skip to content
Related Articles
Open in App
Not now

Related Articles

Suffix Tree Application 1 – Substring Check

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 11 Oct, 2021
Improve Article
Save Article

Given a text string and a pattern string, check if a pattern exists in text or not.
Few pattern searching algorithms (KMP, Rabin-Karp, Naive Algorithm, Finite Automata) are already discussed, which can be used for this check. 
Here we will discuss suffix tree based algorithm.
As a prerequisite, we must know how to build a suffix tree in one or the other way. 
Once we have a suffix tree built for given text, we need to traverse the tree from root to leaf against the characters in pattern. If we do not fall off the tree (i.e. there is a path from root to leaf or somewhere in middle) while traversal, then pattern exists in text as a substring. 

Suffix Tree Application

Here we will build suffix tree using Ukkonen’s Algorithm, discussed already as below: 
Ukkonen’s Suffix Tree Construction – Part 1 
Ukkonen’s Suffix Tree Construction – Part 2 
Ukkonen’s Suffix Tree Construction – Part 3 
Ukkonen’s Suffix Tree Construction – Part 4 
Ukkonen’s Suffix Tree Construction – Part 5 
Ukkonen’s Suffix Tree Construction – Part 6
The core traversal implementation for substring check, can be modified accordingly for suffix trees built by other algorithms.


// A C program for substring check using Ukkonen's Suffix Tree Construction
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX_CHAR 256
struct SuffixTreeNode {
    struct SuffixTreeNode *children[MAX_CHAR];
    //pointer to other node via suffix link
    struct SuffixTreeNode *suffixLink;
    /*(start, end) interval specifies the edge, by which the
     node is connected to its parent node. Each edge will
     connect two nodes,  one parent and one child, and
     (start, end) interval of a given edge  will be stored
     in the child node. Let's say there are two nods A and B
     connected by an edge with indices (5, 8) then this
     indices (5, 8) will be stored in node B. */
    int start;
    int *end;
    /*for leaf nodes, it stores the index of suffix for
      the path  from root to leaf*/
    int suffixIndex;
typedef struct SuffixTreeNode Node;
char text[100]; //Input string
Node *root = NULL; //Pointer to root node
/*lastNewNode will point to newly created internal node,
  waiting for it's suffix link to be set, which might get
  a new suffix link (other than root) in next extension of
  same phase. lastNewNode will be set to NULL when last
  newly created internal node (if there is any) got it's
  suffix link reset to new internal node created in next
  extension of same phase. */
Node *lastNewNode = NULL;
Node *activeNode = NULL;
/*activeEdge is represented as an input string character
  index (not the character itself)*/
int activeEdge = -1;
int activeLength = 0;
// remainingSuffixCount tells how many suffixes yet to
// be added in tree
int remainingSuffixCount = 0;
int leafEnd = -1;
int *rootEnd = NULL;
int *splitEnd = NULL;
int size = -1; //Length of input string
Node *newNode(int start, int *end)
    Node *node =(Node*) malloc(sizeof(Node));
    int i;
    for (i = 0; i < MAX_CHAR; i++)
          node->children[i] = NULL;
    /*For root node, suffixLink will be set to NULL
    For internal nodes, suffixLink will be set to root
    by default in  current extension and may change in
    next extension*/
    node->suffixLink = root;
    node->start = start;
    node->end = end;
    /*suffixIndex will be set to -1 by default and
      actual suffix index will be set later for leaves
      at the end of all phases*/
    node->suffixIndex = -1;
    return node;
int edgeLength(Node *n) {
    if(n == root)
        return 0;
    return *(n->end) - (n->start) + 1;
int walkDown(Node *currNode)
    /*activePoint change for walk down (APCFWD) using
     Skip/Count Trick  (Trick 1). If activeLength is greater
     than current edge length, set next  internal node as
     activeNode and adjust activeEdge and activeLength
     accordingly to represent same activePoint*/
    if (activeLength >= edgeLength(currNode))
        activeEdge += edgeLength(currNode);
        activeLength -= edgeLength(currNode);
        activeNode = currNode;
        return 1;
    return 0;
void extendSuffixTree(int pos)
    /*Extension Rule 1, this takes care of extending all
    leaves created so far in tree*/
    leafEnd = pos;
    /*Increment remainingSuffixCount indicating that a
    new suffix added to the list of suffixes yet to be
    added in tree*/
    /*set lastNewNode to NULL while starting a new phase,
     indicating there is no internal node waiting for
     it's suffix link reset in current phase*/
    lastNewNode = NULL;
    //Add all suffixes (yet to be added) one by one in tree
    while(remainingSuffixCount > 0) {
        if (activeLength == 0)
            activeEdge = pos; //APCFALZ
        // There is no outgoing edge starting with
        // activeEdge from activeNode
        if (activeNode->children] == NULL)
            //Extension Rule 2 (A new leaf edge gets created)
            activeNode->children] =
                                          newNode(pos, &leafEnd);
            /*A new leaf edge is created in above line starting
             from  an existing node (the current activeNode), and
             if there is any internal node waiting for it's suffix
             link get reset, point the suffix link from that last
             internal node to current activeNode. Then set lastNewNode
             to NULL indicating no more node waiting for suffix link
            if (lastNewNode != NULL)
                lastNewNode->suffixLink = activeNode;
                lastNewNode = NULL;
        // There is an outgoing edge starting with activeEdge
        // from activeNode
            // Get the next node at the end of edge starting
            // with activeEdge
            Node *next = activeNode->children];
            if (walkDown(next))//Do walkdown
                //Start from next node (the new activeNode)
            /*Extension Rule 3 (current character being processed
              is already on the edge)*/
            if (text[next->start + activeLength] == text[pos])
                //If a newly created node waiting for it's
                //suffix link to be set, then set suffix link
                //of that waiting node to current active node
                if(lastNewNode != NULL && activeNode != root)
                    lastNewNode->suffixLink = activeNode;
                    lastNewNode = NULL;
                /*STOP all further processing in this phase
                and move on to next phase*/
            /*We will be here when activePoint is in the middle of
              the edge being traversed and current character
              being processed is not  on the edge (we fall off
              the tree). In this case, we add a new internal node
              and a new leaf edge going out of that new node. This
              is Extension Rule 2, where a new leaf edge and a new
            internal node get created*/
            splitEnd = (int*) malloc(sizeof(int));
            *splitEnd = next->start + activeLength - 1;
            //New internal node
            Node *split = newNode(next->start, splitEnd);
            activeNode->children] = split;
            //New leaf coming out of new internal node
            split->children] = newNode(pos, &leafEnd);
            next->start += activeLength;
            split->children] = next;
            /*We got a new internal node here. If there is any
              internal node created in last extensions of same
              phase which is still waiting for it's suffix link
              reset, do it now.*/
            if (lastNewNode != NULL)
            /*suffixLink of lastNewNode points to current newly
              created internal node*/
                lastNewNode->suffixLink = split;
            /*Make the current newly created internal node waiting
              for it's suffix link reset (which is pointing to root
              at present). If we come across any other internal node
              (existing or newly created) in next extension of same
              phase, when a new leaf edge gets added (i.e. when
              Extension Rule 2 applies is any of the next extension
              of same phase) at that point, suffixLink of this node
              will point to that internal node.*/
            lastNewNode = split;
        /* One suffix got added in tree, decrement the count of
          suffixes yet to be added.*/
        if (activeNode == root && activeLength > 0) //APCFER2C1
            activeEdge = pos - remainingSuffixCount + 1;
        else if (activeNode != root) //APCFER2C2
            activeNode = activeNode->suffixLink;
void print(int i, int j)
    int k;
    for (k=i; k<=j; k++)
        printf("%c", text[k]);
//Print the suffix tree as well along with setting suffix index
//So tree will be printed in DFS manner
//Each edge along with it's suffix index will be printed
void setSuffixIndexByDFS(Node *n, int labelHeight)
    if (n == NULL)  return;
    if (n->start != -1) //A non-root node
        //Print the label on edge from parent to current node
        //Uncomment below line to print suffix tree
       // print(n->start, *(n->end));
    int leaf = 1;
    int i;
    for (i = 0; i < MAX_CHAR; i++)
        if (n->children[i] != NULL)
            //Uncomment below two lines to print suffix index
           // if (leaf == 1 && n->start != -1)
             //   printf(" [%d]\n", n->suffixIndex);
            //Current node is not a leaf as it has outgoing
            //edges from it.
            leaf = 0;
            setSuffixIndexByDFS(n->children[i], labelHeight +
    if (leaf == 1)
        n->suffixIndex = size - labelHeight;
        //Uncomment below line to print suffix index
        //printf(" [%d]\n", n->suffixIndex);
void freeSuffixTreeByPostOrder(Node *n)
    if (n == NULL)
    int i;
    for (i = 0; i < MAX_CHAR; i++)
        if (n->children[i] != NULL)
    if (n->suffixIndex == -1)
/*Build the suffix tree and print the edge labels along with
suffixIndex. suffixIndex for leaf edges will be >= 0 and
for non-leaf edges will be -1*/
void buildSuffixTree()
    size = strlen(text);
    int i;
    rootEnd = (int*) malloc(sizeof(int));
    *rootEnd = - 1;
    /*Root is a special node with start and end indices as -1,
    as it has no parent from where an edge comes to root*/
    root = newNode(-1, rootEnd);
    activeNode = root; //First activeNode will be root
    for (i=0; i<size; i++)
    int labelHeight = 0;
    setSuffixIndexByDFS(root, labelHeight);
int traverseEdge(char *str, int idx, int start, int end)
    int k = 0;
    //Traverse the edge with character by character matching
    for(k=start; k<=end && str[idx] != '\0'; k++, idx++)
        if(text[k] != str[idx])
            return -1;  // mo match
    if(str[idx] == '\0')
        return 1;  // match
    return 0;  // more characters yet to match
int doTraversal(Node *n, char* str, int idx)
    if(n == NULL)
        return -1; // no match
    int res = -1;
    //If node n is not root node, then traverse edge
    //from node n's parent to node n.
    if(n->start != -1)
        res = traverseEdge(str, idx, n->start, *(n->end));
        if(res != 0)
            return res;  // match (res = 1) or no match (res = -1)
    //Get the character index to search
    idx = idx + edgeLength(n);
    //If there is an edge from node n going out
    //with current character str[idx], traverse that edge
    if(n->children[str[idx]] != NULL)
        return doTraversal(n->children[str[idx]], str, idx);
        return -1;  // no match
void checkForSubString(char* str)
    int res = doTraversal(root, str, 0);
    if(res == 1)
        printf("Pattern <%s> is a Substring\n", str);
        printf("Pattern <%s> is NOT a Substring\n", str);
// driver program to test above functions
int main(int argc, char *argv[])
    strcpy(text, "THIS IS A TEST TEXT$");
    checkForSubString(" ");
    checkForSubString("IS A");
    checkForSubString(" IS A ");
    checkForSubString("THIS IS GOOD");
    //Free the dynamically allocated memory
    return 0;


Pattern <TEST> is a Substring
Pattern <A> is a Substring
Pattern < > is a Substring
Pattern <IS A> is a Substring
Pattern < IS A > is a Substring
Pattern <TEST1> is NOT a Substring
Pattern <THIS IS GOOD> is NOT a Substring
Pattern <TES> is a Substring
Pattern <TESA> is NOT a Substring
Pattern <ISB> is NOT a Substring

Ukkonen’s Suffix Tree Construction takes O(N) time and space to build suffix tree for a string of length N and after that, traversal for substring check takes O(M) for a pattern of length M.
With a slight modification in the traversal algorithm discussed here, we can answer the following: 

  1. Find all occurrences of a given pattern P present in text T.
  2. How to check if a pattern is prefix of a text?
  3. How to check if a pattern is suffix of a text?

We have published following more articles on suffix tree applications: 

This article is contributed by Anurag Singh. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!