Step by step Shortest Path from source node to destination node in a Binary Tree
Given a root of binary tree and two integers startValue and destValue denoting the starting and ending node respectively. The task is to find the shortest path from the start node to the end node and print the path in the form of directions given below.
- Going from one node to its left child node is indicated by the letter ‘L’.
- Going from one node to its right child node is indicated by the letter ‘R’.
- To navigate from a node to its parent node, use the letter ‘U’.
Examples:
Input: root = [5, 1, 2, 3, null, 6, 4], startValue = 3, destValue = 6
5
/ \
1 2
/ / \
3 6 4Output: “UURL”
Explanation: The shortest path is: 3 → 1 → 5 → 2 → 6.Input: root = [2, 1], startValue = 2, destValue = 1
2
/
1Output: “L”
Explanation: The shortest path is: 2 → 1.
Approach: The simplest way to solve this problem is to use the LCA (Lowest Common Ancestor) of a binary tree. Follow the steps below to solve the given problem.
- Apply LCA to get a new root.
- Get the Path from the new root to start and dest.
- Concatenate startPath and destPath, and make sure to replace startPath’s char with ‘U’.
Below is the implementation of the above approach.
C++
// C++ program for above approach #include <iostream> using namespace std; // Structure of Tree class TreeNode { public : int val; TreeNode* left; TreeNode* right; TreeNode( int val2) { val = val2; left = NULL; right = NULL; } }; // Function to find LCA of two nodes TreeNode* lca(TreeNode* root, int startValue, int destValue) { // Base Case if (!root) return NULL; if (root->val == startValue) return root; if (root->val == destValue) return root; auto l = lca(root->left, startValue, destValue); auto r = lca(root->right, startValue, destValue); if (l && r) return root; return l ? l : r; } bool getPath(TreeNode* root, int value, string& path) { // Base Cases if (!root) return false ; if (root->val == value) return true ; path += 'L' ; auto res = getPath(root->left, value, path); if (res) return true ; path.pop_back(); path += 'R' ; res = getPath(root->right, value, path); if (res) return true ; path.pop_back(); return false ; } // Function to get directions string getDirections(TreeNode* root, int startValue, int destValue) { // Find the LCA first root = lca(root, startValue, destValue); string p1, p2; // Get the path getPath(root, startValue, p1); getPath(root, destValue, p2); for ( auto & c : p1) c = 'U' ; // Return the concatenation return p1 + p2; } // Driver Code int main() { /* 5 / \ 1 2 / / \ 3 6 4 */ TreeNode* root = new TreeNode(5); root->left = new TreeNode(1); root->right = new TreeNode(2); root->left->left = new TreeNode(3); root->right->left = new TreeNode(6); root->right->right = new TreeNode(4); int startValue = 3; int endValue = 6; // Function Call string ans = getDirections( root, startValue, endValue); // Print answer cout << ans; } |
Python3
# Python program for above approach # Structure of Tree class TreeNode : def __init__( self , val2): self .val = val2; self .left = None ; self .right = None ; # Function to find LCA of two nodes def lca(root, startValue, destValue): # Base Case if ( not root): return None ; if (root.val = = startValue): return root; if (root.val = = destValue): return root; l = lca(root.left, startValue, destValue); r = lca(root.right, startValue, destValue); if (l and r): return root; return l if l else r; def getPath(root, value, path) : # Base Cases if ( not root): return False ; if (root.val = = value): return True ; path.append( 'L' ); res = getPath(root.left, value, path); if (res): return True ; path.pop(); path.append( 'R' ); res = getPath(root.right, value, path); if (res): return True ; path.pop(); return False ; # Function to get directions def getDirections(root, startValue, destValue) : # Find the LCA first root = lca(root, startValue, destValue); p1 = [] p2 = [] # Get the path getPath(root, startValue, p1); getPath(root, destValue, p2); for i in range ( len (p1)): p1[i] = 'U' ; # Return the concatenation s = "" for i in range ( len (p1)): s + = p1[i]; for i in range ( len (p2)): s + = p2[i]; return s; # Driver Code """ 5 / \ 1 2 / / \ 3 6 4 """ root = TreeNode( 5 ); root.left = TreeNode( 1 ); root.right = TreeNode( 2 ); root.left.left = TreeNode( 3 ); root.right.left = TreeNode( 6 ); root.right.right = TreeNode( 4 ); startValue = 3 ; endValue = 6 ; # Function Call ans = getDirections(root, startValue, endValue); # Print answer print (ans) # self code is contributed by Saurabh Jaiswal |
Javascript
<script> // JavaScript program for above approach // Structure of Tree class TreeNode { constructor(val2) { this .val = val2; this .left = null ; this .right = null ; } }; // Function to find LCA of two nodes function lca(root, startValue, destValue) { // Base Case if (!root) return null ; if (root.val == startValue) return root; if (root.val == destValue) return root; let l = lca(root.left, startValue, destValue); let r = lca(root.right, startValue, destValue); if (l && r) return root; return l ? l : r; } function getPath(root, value, path) { // Base Cases if (!root) return false ; if (root.val == value) return true ; path.push( 'L' ); let res = getPath(root.left, value, path); if (res) return true ; path.pop(); path.push( 'R' ); res = getPath(root.right, value, path); if (res) return true ; path.pop(); return false ; } // Function to get directions function getDirections(root, startValue, destValue) { // Find the LCA first root = lca(root, startValue, destValue); let p1 = [], p2 = []; // Get the path getPath(root, startValue, p1); getPath(root, destValue, p2); for (let i = 0; i < p1.length; i++) p1[i] = 'U' ; // Return the concatenation let s = "" for (let i = 0; i < p1.length; i++) { s += p1[i]; } for (let i = 0; i < p2.length; i++) { s += p2[i]; } return s; } // Driver Code /* 5 / \ 1 2 / / \ 3 6 4 */ let root = new TreeNode(5); root.left = new TreeNode(1); root.right = new TreeNode(2); root.left.left = new TreeNode(3); root.right.left = new TreeNode(6); root.right.right = new TreeNode(4); let startValue = 3; let endValue = 6; // Function Call let ans = getDirections(root, startValue, endValue); // Print answer document.write(ans) // This code is contributed by Potta Lokesh </script> |
UURL
Time complexity: O(3N), Because three traversals are done.
Auxiliary Space: O(1)
Efficient Approach: This approach is implementation based but LCA is not used in this approach. Follow the steps below to solve the given problem.
- Build directions for both start and destination from the root.
- Say we get “LLRRL” and “LRR”.
- Remove common prefix path.
- We remove “L”, and now start direction is “LRRL”, and destination – “RR”
- Replace all steps in the start direction to “U” and add the destination direction.
- The result is “UUUU” + “RR”.
Below is the implementation of the above approach.
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Structure of Tree class TreeNode { public : int val; TreeNode* left; TreeNode* right; TreeNode( int val2) { val = val2; left = NULL; right = NULL; } }; // Find Function bool find(TreeNode* n, int val, string& path) { if (n->val == val) return true ; if (n->left && find(n->left, val, path)) { path.push_back( 'L' ); return true ; } if (n->right && find(n->right, val, path)) { path.push_back( 'R' ); return true ; } return false ; } // Function to keep track // of directions at any point string getDirections(TreeNode* root, int startValue, int destValue) { // To store the startPath and destPath string s_p, d_p; find(root, startValue, s_p); find(root, destValue, d_p); while (!s_p.empty() && !d_p.empty() && s_p.back() == d_p.back()) { s_p.pop_back(); d_p.pop_back(); } for ( int i = 0; i < s_p.size(); i++) { s_p[i] = 'U' ; } reverse(d_p.begin(), d_p.end()); string ans = s_p + d_p; return ans; } // Driver Code int main() { /* 5 / \ 1 2 / / \ 3 6 4 */ TreeNode* root = new TreeNode(5); root->left = new TreeNode(1); root->right = new TreeNode(2); root->left->left = new TreeNode(3); root->right->left = new TreeNode(6); root->right->right = new TreeNode(4); int startValue = 3; int endValue = 6; // Function Call string ans = getDirections( root, startValue, endValue); // Print the result cout << ans; } |
Python
# Python program for above approach class TreeNode: def __init__( self , val2): self .val = val2 self .left = None self .right = None # Find Function def find(n, val, path): if n.val = = val: return True if n.left and find(n.left, val, path): path.append( 'L' ) return True if n.right and find(n.right, val, path): path.append( 'R' ) return True return False # Function to keep track # of directions at any point def getDirections(root, startValue, destValue): # To store the startPath and destPath s_p, d_p = [], [] find(root, startValue, s_p) find(root, destValue, d_p) while s_p and d_p and s_p[ - 1 ] = = d_p[ - 1 ]: s_p.pop() d_p.pop() for i in range ( len (s_p)): s_p[i] = 'U' d_p.reverse() ans = s_p + d_p return ans if __name__ = = '__main__' : root = TreeNode( 5 ) root.left = TreeNode( 1 ) root.right = TreeNode( 2 ) root.left.left = TreeNode( 3 ) root.right.left = TreeNode( 6 ) root.right.right = TreeNode( 4 ) startValue = 3 endValue = 6 ans = getDirections(root, startValue, endValue) print (ans) # This code is contributed by aadityamaharshi21. |
UURL
Time complexity: O(N)
Auxiliary Space: O(1), If recursion stack space if neglected.
Please Login to comment...