Skip to content
Related Articles

Related Articles

Improve Article

Split Array into K non-overlapping subset such that maximum among all subset sum is minimum

  • Last Updated : 20 Aug, 2021

Given an array arr[] consisting of N integers and an integer K, the task is to split the given array into K non-overlapping subsets such that the maximum among the sum of all subsets is minimum.

Examples:

Input: arr[] = {1, 7, 9, 2, 12, 3, 3}, M = 3
Output: 13
Explanation:
One possible way to spit the array into 3 non-overlapping subsets is {arr[4], arr[0]}, {arr[2], arr[6]}, and {arr[1], arr[5], arr[3]}.
The sum of each subset is 13, 12 and 12 respectively. Now, the maximum among all the sum of subsets is 13, which is the minimum possible sum.

Input: arr[] = {1, 2, 3, 4, 5}, M = 2
Output: 8

Approach: The given problem can be solved by the Greedy Approach by using the priority queue and sorting the given array. Follow the steps below to solve the problem:



Below is the implementation of the above approach:

+++++

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to split the array into M
// groups such that maximum of the sum
// of all elements of all the groups
// is minimized
int findMinimumValue(int arr[], int N,
                     int M)
{
    // Sort the array in decreasing order
    sort(arr, arr + N, greater<int>());
 
    // Initialize priority queue (Min heap)
    priority_queue<int, vector<int>,
                   greater<int> >
        pq;
 
    // Push 0 for all the M groups
    for (int i = 1; i <= M; ++i) {
        pq.push(0);
    }
 
    // Traverse the array, arr[]
    for (int i = 0; i < N; ++i) {
 
        // Pop the group having the
        // minimum sum
        int val = pq.top();
        pq.pop();
 
        // Increment val by arr[i]
        val += arr[i];
 
        // Push the new sum of the
        // group into the pq
        pq.push(val);
    }
 
    // Iterate while size of the pq
    // is greater than 1
    while (pq.size() > 1) {
        pq.pop();
    }
 
    // Return result
    return pq.top();
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 7, 9, 2, 12, 3, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
    cout << findMinimumValue(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
public class Main
{
    // Function to split the array into M
    // groups such that maximum of the sum
    // of all elements of all the groups
    // is minimized
    static int findMinimumValue(Vector<Integer> arr, int N, int M)
    {
        
        // Sort the array in decreasing order
        Collections.sort(arr);
        Collections.reverse(arr);
        
        // Initialize priority queue (Min heap)
        Vector<Integer> pq = new Vector<Integer>();
        
        // Push 0 for all the M groups
        for (int i = 1; i <= M; ++i) {
            pq.add(0);
        }
         
        Collections.sort(pq);
        
        // Traverse the array, arr[]
        for (int i = 0; i < N; ++i) {
        
            // Pop the group having the
            // minimum sum
            int val = pq.get(0);
            pq.remove(0);
        
            // Increment val by arr[i]
            val += arr.get(i);
        
            // Push the new sum of the
            // group into the pq
            pq.add(val);
            Collections.sort(pq);
        }
        
        // Iterate while size of the pq
        // is greater than 1
        while (pq.size() > 1) {
            pq.remove(0);
        }
        
        // Return result
        return pq.get(0);
    }
     
    public static void main(String[] args) {
        Integer[] arr = { 1, 7, 9, 2, 12, 3, 3 };
        Vector<Integer> Arr = new Vector<Integer>();
        Collections.addAll(Arr, arr);
        int N = Arr.size();
        int K = 3;
        System.out.println(findMinimumValue(Arr, N, K));
    }
}
 
// This code is contributed by divyesh072019.


Python3




# Python3 program for the above approach
 
# Function to split the array into M
# groups such that maximum of the sum
# of all elements of all the groups
# is minimized
def findMinimumValue(arr, N, M):
    
    # Sort the array in decreasing order
    arr.sort()
    arr.reverse()
    
    # Initialize priority queue (Min heap)
    pq = []
    
    # Push 0 for all the M groups
    for i in range(1, M + 1):
        pq.append(0)
      
    pq.sort()
    
    # Traverse the array, arr[]
    for i in range(N):
    
        # Pop the group having the
        # minimum sum
        val = pq[0]
        del pq[0]
    
        # Increment val by arr[i]
        val += arr[i]
    
        # Push the new sum of the
        # group into the pq
        pq.append(val)
        pq.sort()
    
    # Iterate while size of the pq
    # is greater than 1
    while (len(pq) > 1) :
        del pq[0]
    
    # Return result
    return pq[0]
 
arr = [ 1, 7, 9, 2, 12, 3, 3 ]
N = len(arr)
K = 3
print(findMinimumValue(arr, N, K))
 
# This code is contributed by suresh07.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to split the array into M
    // groups such that maximum of the sum
    // of all elements of all the groups
    // is minimized
    static int findMinimumValue(int[] arr, int N, int M)
    {
       
        // Sort the array in decreasing order
        Array.Sort(arr);
        Array.Reverse(arr);
       
        // Initialize priority queue (Min heap)
        List<int> pq = new List<int>();
       
        // Push 0 for all the M groups
        for (int i = 1; i <= M; ++i) {
            pq.Add(0);
        }
         
        pq.Sort();
       
        // Traverse the array, arr[]
        for (int i = 0; i < N; ++i) {
       
            // Pop the group having the
            // minimum sum
            int val = pq[0];
            pq.RemoveAt(0);
       
            // Increment val by arr[i]
            val += arr[i];
       
            // Push the new sum of the
            // group into the pq
            pq.Add(val);
            pq.Sort();
        }
       
        // Iterate while size of the pq
        // is greater than 1
        while (pq.Count > 1) {
            pq.RemoveAt(0);
        }
       
        // Return result
        return pq[0];
    }
 
  static void Main() {
    int[] arr = { 1, 7, 9, 2, 12, 3, 3 };
    int N = arr.Length;
    int K = 3;
    Console.Write(findMinimumValue(arr, N, K));
  }
}
 
// This code is contributed by divyeshrabadiya07.


Javascript




<script>
    // Javascript program for the above approach
     
    // Function to split the array into M
    // groups such that maximum of the sum
    // of all elements of all the groups
    // is minimized
    function findMinimumValue(arr, N, M)
    {
        
        // Sort the array in decreasing order
        arr.sort(function(a, b){return a - b});
        arr.reverse();
        
        // Initialize priority queue (Min heap)
        let pq = [];
        
        // Push 0 for all the M groups
        for (let i = 1; i <= M; ++i) {
            pq.push(0);
        }
          
        pq.sort(function(a, b){return a - b});
        
        // Traverse the array, arr[]
        for (let i = 0; i < N; ++i) {
        
            // Pop the group having the
            // minimum sum
            let val = pq[0];
            pq.shift();
        
            // Increment val by arr[i]
            val += arr[i];
        
            // Push the new sum of the
            // group into the pq
            pq.push(val);
            pq.sort(function(a, b){return a - b});
        }
        
        // Iterate while size of the pq
        // is greater than 1
        while (pq.length > 1) {
            pq.shift();
        }
        
        // Return result
        return pq[0];
    }
     
    let arr = [ 1, 7, 9, 2, 12, 3, 3 ];
    let N = arr.length;
    let K = 3;
    document.write(findMinimumValue(arr, N, K));
     
    // This code is contributed by decode2207.
</script>


Output: 

13

 

Time Complexity: O(N*log K)
Auxiliary Space: O(M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :