There is a given array and split it from a specified position, and move the first splitted part of the array and then add to the end of array

Examples:
Input : arr[] = {12, 10, 5, 6, 52, 36}
k = 2
Output : arr[] = {5, 6, 52, 36, 12, 10}
Explanation : here k is two so first two elements are splitted and they are added at the end of array
Input : arr[] = {3, 1, 2}
k = 1
Output : arr[] = {1, 2, 3}
Explanation :here k is one so first one element are splitted and it is added at the end of array
Simple Solution: We will rotate the elements of the array one by one.
Implementation:
C
#include <stdio.h>
void splitArr( int arr[], int n, int k)
{
for ( int i = 0; i < k; i++) {
int x = arr[0];
for ( int j = 0; j < n - 1; ++j)
arr[j] = arr[j + 1];
arr[n - 1] = x;
}
}
int main()
{
int arr[] = { 12, 10, 5, 6, 52, 36 };
int n = sizeof (arr) / sizeof (arr[0]);
int position = 2;
splitArr(arr, n, position);
for ( int i = 0; i < n; ++i)
printf ( "%d " , arr[i]);
return 0;
}
|
C++
#include <iostream>
using namespace std;
void splitArr( int arr[], int n, int k)
{
for ( int i = 0; i < k; i++) {
int x = arr[0];
for ( int j = 0; j < n - 1; ++j)
arr[j] = arr[j + 1];
arr[n - 1] = x;
}
}
int main()
{
int arr[] = { 12, 10, 5, 6, 52, 36 };
int n = sizeof (arr) / sizeof (arr[0]);
int position = 2;
splitArr(arr, n, position);
for ( int i = 0; i < n; ++i)
cout << " " << arr[i];
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
class GFG {
public static void splitArr( int arr[], int n, int k)
{
for ( int i = 0 ; i < k; i++) {
int x = arr[ 0 ];
for ( int j = 0 ; j < n - 1 ; ++j)
arr[j] = arr[j + 1 ];
arr[n - 1 ] = x;
}
}
public static void main(String[] args)
{
int arr[] = { 12 , 10 , 5 , 6 , 52 , 36 };
int n = arr.length;
int position = 2 ;
splitArr(arr, n, position);
for ( int i = 0 ; i < n; ++i)
System.out.print(arr[i] + " " );
}
}
|
Python3
def splitArr(arr, n, k):
for i in range ( 0 , k):
x = arr[ 0 ]
for j in range ( 0 , n - 1 ):
arr[j] = arr[j + 1 ]
arr[n - 1 ] = x
arr = [ 12 , 10 , 5 , 6 , 52 , 36 ]
n = len (arr)
position = 2
splitArr(arr, n, position)
for i in range ( 0 , n):
print (arr[i], end = ' ' )
|
C#
using System;
class GFG {
public static void splitArr( int [] arr, int n,
int k)
{
for ( int i = 0; i < k; i++)
{
int x = arr[0];
for ( int j = 0; j < n - 1; ++j)
arr[j] = arr[j + 1];
arr[n - 1] = x;
}
}
public static void Main()
{
int [] arr = {12, 10, 5, 6, 52, 36};
int n = arr.Length;
int position = 2;
splitArr(arr, n, position);
for ( int i = 0; i < n; ++i)
Console.Write(arr[i] + " " );
}
}
|
PHP
<?php
function splitArr(& $arr , $n , $k )
{
for ( $i = 0; $i < $k ; $i ++)
{
$x = $arr [0];
for ( $j = 0; $j < $n - 1; ++ $j )
$arr [ $j ] = $arr [ $j + 1];
$arr [ $n - 1] = $x ;
}
}
$arr = array (12, 10, 5, 6, 52, 36);
$n = sizeof( $arr );
$position = 2;
splitArr( $arr , n, $position );
for ( $i = 0; $i < $n ; ++ $i )
echo $arr [ $i ]. " " ;
?>
|
Javascript
<script>
function splitArr(arr, n, k){
for (let i = 0; i < k; i++)
{
let x = arr[0];
for (let j = 0; j < n - 1; ++j)
arr[j] = arr[j + 1];
arr[n - 1] = x;
}
}
let arr = [ 12, 10, 5, 6, 52, 36 ];
let n = arr.length;
let position = 2;
splitArr(arr, n, position);
for (let i = 0; i < n; ++i)
document.write(arr[i]+ " " );
</script>
|
Time complexity: O(n*k).
Space complexity: O(1), since no extra space has been taken.
Another approach: Another approach is to make a temporary array with double the size and copy our array element into a new array twice and then copy the element from the new array to our array by taking the rotation as starting index up to the length of our array.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
void splitArr( int arr[], int length, int rotation)
{
int tmp[length * 2] = {0};
for ( int i = 0; i < length; i++)
{
tmp[i] = arr[i];
tmp[i + length] = arr[i];
}
for ( int i = rotation; i < rotation + length; i++)
{
arr[i - rotation] = tmp[i];
}
}
int main()
{
int arr[] = { 12, 10, 5, 6, 52, 36 };
int n = sizeof (arr) / sizeof (arr[0]);
int position = 2;
splitArr(arr, n, position);
for ( int i = 0; i < n; ++i)
printf ( "%d " , arr[i]);
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
class GFG {
public static void SplitAndAdd( int [] A, int length, int rotation){
int [] tmp = new int [length* 2 ];
System.arraycopy(A, 0 , tmp, 0 , length);
System.arraycopy(A, 0 , tmp, length, length);
for ( int i=rotation;i<rotation+length;i++)
A[i-rotation]=tmp[i];
}
public static void main(String[] args)
{
int arr[] = { 12 , 10 , 5 , 6 , 52 , 36 };
int n = arr.length;
int position = 2 ;
SplitAndAdd(arr, n, position);
for ( int i = 0 ; i < n; ++i)
System.out.print(arr[i] + " " );
}
}
|
Python3
def SplitAndAdd(A, length, rotation):
tmp = [ 0 for i in range (length * 2 )]
for i in range (length):
tmp[i] = A[i]
tmp[i + length] = A[i]
for i in range (rotation,
rotation + length, 1 ):
A[i - rotation] = tmp[i];
arr = [ 12 , 10 , 5 , 6 , 52 , 36 ]
n = len (arr)
position = 2
SplitAndAdd(arr, n, position);
for i in range (n):
print (arr[i], end = " " )
print ()
|
C#
using System;
class GFG
{
public static void SplitAndAdd( int [] A,
int length,
int rotation)
{
int [] tmp = new int [length * 2];
Array.Copy(A, 0, tmp, 0, length);
Array.Copy(A, 0, tmp, length, length);
for ( int i = rotation; i < rotation + length; i++)
{
A[i - rotation] = tmp[i];
}
}
public static void Main( string [] args)
{
int [] arr = new int [] {12, 10, 5, 6, 52, 36};
int n = arr.Length;
int position = 2;
SplitAndAdd(arr, n, position);
for ( int i = 0; i < n; ++i)
{
Console.Write(arr[i] + " " );
}
}
}
|
Javascript
<script>
function SplitAndAdd(A,Length,rotation)
{
let tmp = new Array(Length*2);
for (let i=0;i<tmp.length;i++)
{
tmp[i]=0;
}
for (let i=0;i<Length;i++)
{
tmp[i] = A[i]
tmp[i + Length] = A[i]
}
for (let i=rotation;i<rotation+Length;i++)
{
A[i - rotation] = tmp[i];
}
}
let arr=[12, 10, 5, 6, 52, 36];
let n = arr.length;
let position = 2;
SplitAndAdd(arr, n, position);
for (let i = 0; i < n; ++i)
document.write(arr[i] + " " );
</script>
|
Time complexity: O(n)
Space complexity: O(2*n)
An efficient O(n) solution is discussed in the following post: Split the array and add the first part to the end | Set 2
This problem is noted but array rotation problem and we can apply the optimized O(n) array rotation methods here.
Program for array rotation
Block swap algorithm for array rotation
Reversal algorithm for array rotation
Quickly find multiple left rotations of an array | Set 1
Print left rotation of array in O(n) time and O(1) space
This article is contributed by Aditya Ranjan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...