Sparse Matrix and its representations | Set 1 (Using Arrays and Linked Lists)
A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix.
Why to use Sparse Matrix instead of simple matrix ?
- Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used to store only those elements.
- Computing time: Computing time can be saved by logically designing a data structure traversing only non-zero elements..
Example:
0 0 3 0 4 0 0 5 7 0 0 0 0 0 0 0 2 6 0 0
Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the matrix are of no use in most of the cases. So, instead of storing zeroes with non-zero elements, we only store non-zero elements. This means storing non-zero elements with triples- (Row, Column, value).
Sparse Matrix Representations can be done in many ways following are two common representations:
- Array representation
- Linked list representation
Method 1: Using Arrays:
2D array is used to represent a sparse matrix in which there are three rows named as
- Row: Index of row, where non-zero element is located
- Column: Index of column, where non-zero element is located
- Value: Value of the non zero element located at index – (row,column)
Implementation:
C++
// C++ program for Sparse Matrix Representation // using Array #include <iostream> using namespace std; int main() { // Assume 4x5 sparse matrix int sparseMatrix[4][5] = { {0 , 0 , 3 , 0 , 4 }, {0 , 0 , 5 , 7 , 0 }, {0 , 0 , 0 , 0 , 0 }, {0 , 2 , 6 , 0 , 0 } }; int size = 0; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) size++; // number of columns in compactMatrix (size) must be // equal to number of non - zero elements in // sparseMatrix int compactMatrix[3][size]; // Making of new matrix int k = 0; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) { compactMatrix[0][k] = i; compactMatrix[1][k] = j; compactMatrix[2][k] = sparseMatrix[i][j]; k++; } for ( int i=0; i<3; i++) { for ( int j=0; j<size; j++) cout << " " << compactMatrix[i][j]; cout << "\n" ; } return 0; } // this code is contributed by shivanisinghss2110 |
C
// C++ program for Sparse Matrix Representation // using Array #include<stdio.h> int main() { // Assume 4x5 sparse matrix int sparseMatrix[4][5] = { {0 , 0 , 3 , 0 , 4 }, {0 , 0 , 5 , 7 , 0 }, {0 , 0 , 0 , 0 , 0 }, {0 , 2 , 6 , 0 , 0 } }; int size = 0; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) size++; // number of columns in compactMatrix (size) must be // equal to number of non - zero elements in // sparseMatrix int compactMatrix[3][size]; // Making of new matrix int k = 0; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) { compactMatrix[0][k] = i; compactMatrix[1][k] = j; compactMatrix[2][k] = sparseMatrix[i][j]; k++; } for ( int i=0; i<3; i++) { for ( int j=0; j<size; j++) printf ( "%d " , compactMatrix[i][j]); printf ( "\n" ); } return 0; } |
Java
// Java program for Sparse Matrix Representation // using Array class GFG { public static void main(String[] args) { int sparseMatrix[][] = { { 0 , 0 , 3 , 0 , 4 }, { 0 , 0 , 5 , 7 , 0 }, { 0 , 0 , 0 , 0 , 0 }, { 0 , 2 , 6 , 0 , 0 } }; int size = 0 ; for ( int i = 0 ; i < 4 ; i++) { for ( int j = 0 ; j < 5 ; j++) { if (sparseMatrix[i][j] != 0 ) { size++; } } } // number of columns in compactMatrix (size) must be // equal to number of non - zero elements in // sparseMatrix int compactMatrix[][] = new int [ 3 ][size]; // Making of new matrix int k = 0 ; for ( int i = 0 ; i < 4 ; i++) { for ( int j = 0 ; j < 5 ; j++) { if (sparseMatrix[i][j] != 0 ) { compactMatrix[ 0 ][k] = i; compactMatrix[ 1 ][k] = j; compactMatrix[ 2 ][k] = sparseMatrix[i][j]; k++; } } } for ( int i = 0 ; i < 3 ; i++) { for ( int j = 0 ; j < size; j++) { System.out.printf( "%d " , compactMatrix[i][j]); } System.out.printf( "\n" ); } } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python program for Sparse Matrix Representation # using arrays # assume a sparse matrix of order 4*5 # let assume another matrix compactMatrix # now store the value,row,column of arr1 in sparse matrix compactMatrix sparseMatrix = [[ 0 , 0 , 3 , 0 , 4 ],[ 0 , 0 , 5 , 7 , 0 ],[ 0 , 0 , 0 , 0 , 0 ],[ 0 , 2 , 6 , 0 , 0 ]] # initialize size as 0 size = 0 for i in range ( 4 ): for j in range ( 5 ): if (sparseMatrix[i][j] ! = 0 ): size + = 1 # number of columns in compactMatrix(size) should # be equal to number of non-zero elements in sparseMatrix rows, cols = ( 3 , size) compactMatrix = [[ 0 for i in range (cols)] for j in range (rows)] k = 0 for i in range ( 4 ): for j in range ( 5 ): if (sparseMatrix[i][j] ! = 0 ): compactMatrix[ 0 ][k] = i compactMatrix[ 1 ][k] = j compactMatrix[ 2 ][k] = sparseMatrix[i][j] k + = 1 for i in compactMatrix: print (i) # This code is contributed by MRINALWALIA |
C#
// C# program for Sparse Matrix Representation // using Array using System; class Program { static void Main( string [] args) { // Assume 4x5 sparse matrix int [, ] sparseMatrix = new int [4, 5] { { 0, 0, 3, 0, 4 }, { 0, 0, 5, 7, 0 }, { 0, 0, 0, 0, 0 }, { 0, 2, 6, 0, 0 } }; int size = 0; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) if (sparseMatrix[i, j] != 0) size++; // number of columns in compactMatrix (size) must be // equal to number of non - zero elements in // sparseMatrix int [, ] compactMatrix = new int [3, size]; // Making of new matrix int k = 0; for ( int i = 0; i < 4; i++) { for ( int j = 0; j < 5; j++) if (sparseMatrix[i, j] != 0) { compactMatrix[0, k] = i; compactMatrix[1, k] = j; compactMatrix[2, k] = sparseMatrix[i, j]; k++; } } for ( int i = 0; i < 3; i++) { for ( int j = 0; j < size; j++) Console.Write( " " + compactMatrix[i, j]); Console.WriteLine(); } } } // This code is contributed by Tapesh(tapeshdua420) |
Javascript
//JS program for Sparse Matrix Representation // using Array // Assume 4x5 sparse matrix let sparseMatrix = [ [0 , 0 , 3 , 0 , 4 ], [0 , 0 , 5 , 7 , 0 ], [0 , 0 , 0 , 0 , 0 ], [0 , 2 , 6 , 0 , 0 ] ]; let size = 0; for (let i = 0; i < 4; i++) for (let j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) size++; // number of columns in compactMatrix (size) must be // equal to number of non - zero elements in // sparseMatrix let compactMatrix = new Array(3); for ( var i = 0; i < 3; i++) compactMatrix[i] = new Array(size); // Making of new matrix let k = 0; for (let i = 0; i < 4; i++) for (let j = 0; j < 5; j++) if (sparseMatrix[i][j] != 0) { compactMatrix[0][k] = i; compactMatrix[1][k] = j; compactMatrix[2][k] = sparseMatrix[i][j]; k++; } for (let i=0; i<3; i++) { for (let j=0; j<size; j++) process.stdout.write( " " + compactMatrix[i][j]); console.log() } // this code is contributed by phasing17 |
0 0 1 1 3 3 2 4 2 3 1 2 3 4 5 7 2 6
Time Complexity: O(NM), where N is the number of rows in the sparse matrix, and M is the number of columns in the sparse matrix.
Auxiliary Space: O(NM), where N is the number of rows in the sparse matrix, and M is the number of columns in the sparse matrix.
Method 2: Using Linked Lists
In linked list, each node has four fields. These four fields are defined as:
- Row: Index of row, where non-zero element is located
- Column: Index of column, where non-zero element is located
- Value: Value of the non zero element located at index – (row,column)
- Next node: Address of the next node
C++
// C++ program for sparse matrix representation. // Using Link list #include<iostream> using namespace std; // Node class to represent link list class Node { public : int row; int col; int data; Node *next; }; // Function to create new node void create_new_node(Node **p, int row_index, int col_index, int x) { Node *temp = *p; Node *r; // If link list is empty then // create first node and assign value. if (temp == NULL) { temp = new Node(); temp->row = row_index; temp->col = col_index; temp->data = x; temp->next = NULL; *p = temp; } // If link list is already created // then append newly created node else { while (temp->next != NULL) temp = temp->next; r = new Node(); r->row = row_index; r->col = col_index; r->data = x; r->next = NULL; temp->next = r; } } // Function prints contents of linked list // starting from start void printList(Node *start) { Node *ptr = start; cout << "row_position:" ; while (ptr != NULL) { cout << ptr->row << " " ; ptr = ptr->next; } cout << endl; cout << "column_position:" ; ptr = start; while (ptr != NULL) { cout << ptr->col << " " ; ptr = ptr->next; } cout << endl; cout << "Value:" ; ptr = start; while (ptr != NULL) { cout << ptr->data << " " ; ptr = ptr->next; } } // Driver Code int main() { // 4x5 sparse matrix int sparseMatrix[4][5] = { { 0 , 0 , 3 , 0 , 4 }, { 0 , 0 , 5 , 7 , 0 }, { 0 , 0 , 0 , 0 , 0 }, { 0 , 2 , 6 , 0 , 0 } }; // Creating head/first node of list as NULL Node *first = NULL; for ( int i = 0; i < 4; i++) { for ( int j = 0; j < 5; j++) { // Pass only those values which // are non - zero if (sparseMatrix[i][j] != 0) create_new_node(&first, i, j, sparseMatrix[i][j]); } } printList(first); return 0; } // This code is contributed by ronaksuba |
C
// C program for Sparse Matrix Representation // using Linked Lists #include<stdio.h> #include<stdlib.h> // Node to represent sparse matrix struct Node { int value; int row_position; int column_postion; struct Node *next; }; // Function to create new node void create_new_node( struct Node** start, int non_zero_element, int row_index, int column_index ) { struct Node *temp, *r; temp = *start; if (temp == NULL) { // Create new node dynamically temp = ( struct Node *) malloc ( sizeof ( struct Node)); temp->value = non_zero_element; temp->row_position = row_index; temp->column_postion = column_index; temp->next = NULL; *start = temp; } else { while (temp->next != NULL) temp = temp->next; // Create new node dynamically r = ( struct Node *) malloc ( sizeof ( struct Node)); r->value = non_zero_element; r->row_position = row_index; r->column_postion = column_index; r->next = NULL; temp->next = r; } } // This function prints contents of linked list // starting from start void PrintList( struct Node* start) { struct Node *temp, *r, *s; temp = r = s = start; printf ( "row_position: " ); while (temp != NULL) { printf ( "%d " , temp->row_position); temp = temp->next; } printf ( "\n" ); printf ( "column_postion: " ); while (r != NULL) { printf ( "%d " , r->column_postion); r = r->next; } printf ( "\n" ); printf ( "Value: " ); while (s != NULL) { printf ( "%d " , s->value); s = s->next; } printf ( "\n" ); } // Driver of the program int main() { // Assume 4x5 sparse matrix int sparseMatric[4][5] = { {0 , 0 , 3 , 0 , 4 }, {0 , 0 , 5 , 7 , 0 }, {0 , 0 , 0 , 0 , 0 }, {0 , 2 , 6 , 0 , 0 } }; /* Start with the empty list */ struct Node* start = NULL; for ( int i = 0; i < 4; i++) for ( int j = 0; j < 5; j++) // Pass only those values which are non - zero if (sparseMatric[i][j] != 0) create_new_node(&start, sparseMatric[i][j], i, j); PrintList(start); return 0; } |
Java
// Java program for sparse matrix representation. // Using Link list import java.util.*; public class SparseMatrix { // Creating head/first node of list as NULL static Node first = null ; // Node class to represent link list public static class Node { int row; int col; int data; Node next; }; // Driver Code public static void main(String[] args) { // 4x5 sparse matrix int [][] sparseMatrix = { { 0 , 0 , 3 , 0 , 4 }, { 0 , 0 , 5 , 7 , 0 }, { 0 , 0 , 0 , 0 , 0 }, { 0 , 2 , 6 , 0 , 0 } }; for ( int i = 0 ; i < 4 ; i++) { for ( int j = 0 ; j < 5 ; j++) { // Pass only those values which // are non - zero if (sparseMatrix[i][j] != 0 ) { create_new_node(i, j, sparseMatrix[i][j]); } } } printList(first); } // Function to create new node private static void create_new_node( int row_index, int col_index, int x) { Node temp = first; Node r; // If link list is empty then // create first node and assign value. if (temp == null ) { temp = new Node(); temp.row = row_index; temp.col = col_index; temp.data = x; temp.next = null ; first = temp; } // If link list is already created // then append newly created node else { while (temp.next != null ) temp = temp.next; r = new Node(); r.row = row_index; r.col = col_index; r.data = x; r.next = null ; temp.next = r; } } // Function prints contents of linked list // starting from start public static void printList(Node start) { Node ptr = start; System.out.print( "row_position:" ); while (ptr != null ) { System.out.print(ptr.row + " " ); ptr = ptr.next; } System.out.println( "" ); System.out.print( "column_position:" ); ptr = start; while (ptr != null ) { System.out.print(ptr.col + " " ); ptr = ptr.next; } System.out.println( "" ); System.out.print( "Value:" ); ptr = start; while (ptr != null ) { System.out.print(ptr.data + " " ); ptr = ptr.next; } } } // This code is contributed by Tapesh (tapeshdua420) |
Python3
# Python Program for Representation of # Sparse Matrix using Linked List # Node Class to represent Linked List Node class Node: # Making the slots for storing row, # column, value, and address __slots__ = "row" , "col" , "data" , "next" # Constructor to initialize the values def __init__( self , row = 0 , col = 0 , data = 0 , next = None ): self .row = row self .col = col self .data = data self . next = next # Class to convert Sparse Matrix # into Linked List class Sparse: # Initialize Class Variables def __init__( self ): self .head = None self .temp = None self .size = 0 # Function which returns the size # of the Linked List def __len__( self ): return self .size # Check the Linked List is # Empty or not def isempty( self ): return self .size = = 0 # Responsible function to create # Linked List from Sparse Matrix def create_new_node( self , row, col, data): # Creating New Node newNode = Node(row, col, data, None ) # Check whether the List is # empty or not if self .isempty(): self .head = newNode else : self .temp. next = newNode self .temp = newNode # Incrementing the size self .size + = 1 # Function display the contents of # Linked List def PrintList( self ): temp = r = s = self .head print ( "row_position:" , end = " " ) while temp ! = None : print (temp.row, end = " " ) temp = temp. next print () print ( "column_postion:" , end = " " ) while r ! = None : print (r.col, end = " " ) r = r. next print () print ( "Value:" , end = " " ) while s ! = None : print (s.data, end = " " ) s = s. next print () # Driver Code if __name__ = = "__main__" : # Creating Object s = Sparse() # Assuming 4x5 Sparse Matrix sparseMatric = [[ 0 , 0 , 3 , 0 , 4 ], [ 0 , 0 , 5 , 7 , 0 ], [ 0 , 0 , 0 , 0 , 0 ], [ 0 , 2 , 6 , 0 , 0 ]] for i in range ( 4 ): for j in range ( 5 ): # Creating Linked List by only those # elements which are non-zero if sparseMatric[i][j] ! = 0 : s.create_new_node(i, j, sparseMatric[i][j]) # Printing the Linked List Representation # of the sparse matrix s.PrintList() # This code is contributed by Naveen Rathore |
C#
// C# program for sparse matrix representation. // Using Link list using System; class Program { // Creating head/first node of list as NULL static Node first = null ; // Node class to represent link list public class Node { public int row; public int col; public int data; public Node next; }; // Driver Code static void Main( string [] args) { // 4x5 sparse matrix int [, ] sparseMatrix = { { 0, 0, 3, 0, 4 }, { 0, 0, 5, 7, 0 }, { 0, 0, 0, 0, 0 }, { 0, 2, 6, 0, 0 } }; for ( int i = 0; i < 4; i++) { for ( int j = 0; j < 5; j++) { // Pass only those values which // are non - zero if (sparseMatrix[i, j] != 0) { create_new_node(i, j, sparseMatrix[i, j]); } } } printList(first); } // Function to create new node private static void create_new_node( int row_index, int col_index, int x) { Node temp = first; Node r; // If link list is empty then // create first node and assign value. if (temp == null ) { temp = new Node(); temp.row = row_index; temp.col = col_index; temp.data = x; temp.next = null ; first = temp; } // If link list is already created // then append newly created node else { while (temp.next != null ) temp = temp.next; r = new Node(); r.row = row_index; r.col = col_index; r.data = x; r.next = null ; temp.next = r; } } // Function prints contents of linked list // starting from start public static void printList(Node start) { Node ptr = start; Console.Write( "row_position:" ); while (ptr != null ) { Console.Write(ptr.row + " " ); ptr = ptr.next; } Console.WriteLine( "" ); Console.Write( "column_position:" ); ptr = start; while (ptr != null ) { Console.Write(ptr.col + " " ); ptr = ptr.next; } Console.WriteLine( "" ); Console.Write( "Value:" ); ptr = start; while (ptr != null ) { Console.Write(ptr.data + " " ); ptr = ptr.next; } } } // This code is contributed by Tapesh (tapeshdua420) |
Javascript
// JS Program for Representation of // Sparse Matrix into Linked List // Node Class to represent Linked List Node class Node { constructor(row, col, data) { this .row = row; this .col = col; this .data = data; this .next = null ; } } // Class to convert Sparse Matrix // into Linked List class Sparse { // Initialize Class Variables constructor() { this .head = null this .temp = null this .size = 0 } // Function which returns the size // of the Linked List len() { return this .size } // Check the Linked List is // Empty or not isempty() { return this .size == 0 } // Responsible function to create // Linked List from Sparse Matrix create_new_node(row, col, data) { // Creating New Node let newNode = new Node(row, col, data) // Check whether the List is // empty or not if ( this .isempty()) this .head = newNode else ( this .temp).next = newNode this .temp = newNode // Incrementing the size this .size += 1 } // Function display the contents of // Linked List PrintList() { let temp = this .head let r = this .head let s = this .head process.stdout.write( "row_position: " ) while (temp != null ) { process.stdout.write(temp.row + " " ) temp = temp.next } console.log() process.stdout.write( "column_postion: " ) while (r != null ) { process.stdout.write(r.col + " " ) r = r.next } console.log() process.stdout.write( "Value: " ) while (s != null ) { process.stdout.write(s.data + " " ) s = s.next } console.log() } } // Driver Code // Creating Object let s = new Sparse() // Assuming 4x5 Sparse Matrix let sparseMatric = [[0, 0, 3, 0, 4], [0, 0, 5, 7, 0], [0, 0, 0, 0, 0], [0, 2, 6, 0, 0]] for ( var i = 0; i < 4; i++) for ( var j = 0; j < 5; j++) // Creating Linked List by only those // elements which are non-zero if (sparseMatric[i][j] != 0) { s.create_new_node(i, j, sparseMatric[i][j]) s.data = sparseMatric[i][j] } // Printing the Linked List Representation // of the sparse matrix s.PrintList() |
row_position:0 0 1 1 3 3 column_position:2 4 2 3 1 2 Value:3 4 5 7 2 6
Time Complexity: O(N*M), where N is the number of rows in the sparse matrix, and M is the number of columns in the sparse matrix.
Auxiliary Space: O(1)
Other representations:
As a Dictionary where row and column numbers are used as keys and values are matrix entries. This method saves space but sequential access of items is costly.
As a list of list. The idea is to make a list of rows and every item of list contains values. We can keep list items sorted by column numbers.
Sparse Matrix and its representations | Set 2 (Using List of Lists and Dictionary of keys)
This article is contributed by Akash Gupta.If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...