Skip to content
Related Articles

Related Articles

Sort perfect squares in an array at their relative positions

View Discussion
Improve Article
Save Article
  • Last Updated : 09 Sep, 2022
View Discussion
Improve Article
Save Article

Given an integer array arr  , the task is to sort only the elements which are perfect squares at their relative positions in the array (positions of other elements must not be affected).

Examples: 

Input: arr[] = {2, 64, 9, 8, 1, 4} 
Output: 2 1 4 8 9 64 
1, 4, 9 and 64 are the only perfect squares from the array.

Input: arr[] = {1, 49, 2, 36} 
Output: 1 36 2 49 

Approach: 

  • Initialize two empty vectors and traverse the array from left to right.
  • Take an integer and a float variable and for every element of the array store it’s square root in both of these variables.
  • If both the variables are equal then push the index of this element in the first vector and push the element itself in the second vector.
  • Sort the second vector.
  • Now, we have the index of all the required elements in the first vector and also all of the required elements in sorted order in the second vector.
  • So, insert the elements of the second vector into the array at the indices present in the first vector one by one.

Below is the implementation of the above approach: 

C++




// C++ program to sort all the elements that are
// perfect squares in their relative positions
#include <bits/stdc++.h>
using namespace std;
 
// function to sort all the elements that are
// perfect squares in their relative positions
void sortPerfectSquare(int arr[], int n)
{
    int a;
    float b;
 
    // v1 will contain index of perfect squares
    // v2 will contain each perfect square
    vector<int> v1;
    vector<int> v2;
 
    for (int i = 0; i < n; i++) {
        b = sqrt(arr[i]);
        a = b;
 
        // if both a and b are equal then
        // arr[i] is a perfect square
        if (a == b) {
            v1.push_back(i);
            v2.push_back(arr[i]);
        }
    }
 
    // sort second vector
    sort(v2.begin(), v2.end());
 
    // put the sorted perfect square
    // back into the array
    int j = 0;
    for (int i = 0; i < n; i++) {
        if (v1[j] == i) {
            arr[i] = v2[j];
            j++;
        }
    }
 
    // print final array
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver code
int main()
{
    int arr[] = { 9, 44, 100, 81, 21, 64 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    sortPerfectSquare(arr, n);
 
    return 0;
}


Java




// Java program to sort all the elements that are
// perfect squares in their relative positions
import java.util.*;
 
class GFG
{
 
// function to sort all the elements that are
// perfect squares in their relative positions
static void sortPerfectSquare(int arr[], int n)
{
    int a;
    float b;
 
    // v1 will contain index of perfect squares
    // v2 will contain each perfect square
    Vector<Integer> v1 = new Vector<Integer>();
    Vector<Integer> v2 = new Vector<Integer>();
 
    for (int i = 0; i < n; i++)
    {
        b = (float) Math.sqrt(arr[i]);
        a = (int) b;
 
        // if both a and b are equal then
        // arr[i] is a perfect square
        if (a == b)
        {
            v1.add(i);
            v2.add(arr[i]);
        }
    }
 
    // sort second vector
    Collections.sort(v2);
 
    // put the sorted perfect square
    // back into the array
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        if (v1.get(j) == i)
        {
            arr[i] = v2.get(j);
            j++;
        }
    }
 
    // print final array
    for (int i = 0; i < n; i++)
            System.out.print(arr[i]+" ");
}
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 9, 44, 100, 81, 21, 64 };
        int n = arr.length;
 
        sortPerfectSquare(arr, n);
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python 3 program to sort all
# the elements that are perfect
# squares in their relative positions
 
# import sqrt() from math lib
from math import sqrt
 
# function to sort all the elements
# that are perfect squares in their
# relative positions
def sortPerfectSquare(arr, n) :
     
    # v1 will contain index of
    # perfect squares and v2 will
    # contain each perfect square
    v1 = []
    v2 = []
     
    for i in range(n):
        b = sqrt(arr[i])
        a = int(b)
         
        # if both a and b are equal then
        # arr[i] is a perfect square
        if a == b :
            v1.append(i)
            v2.append(arr[i])
     
    # sort second list
    v2.sort()
     
    j = 0
     
    # put the sorted perfect square
    # back into the array
    for i in range(n) :
        if v1[j] == i :
            arr[i] = v2[j]
            j += 1
     
    # print final array
    for i in range(n) :
        print(arr[i], end = " ")
         
# Driver code
if __name__ == "__main__" :
    arr = [9, 44, 100, 81, 21, 64]
    n = len(arr)
     
    sortPerfectSquare(arr, n);
 
# This code is contributed by ANKITRAI1


C#




// C# program to sort all the elements that are
// perfect squares in their relative positions
using System;
using System.Collections.Generic;
 
class GFG
{
 
// function to sort all the elements that are
// perfect squares in their relative positions
static void sortPerfectSquare(int []arr, int n)
{
    int a;
    float b;
 
    // v1 will contain index of perfect squares
    // v2 will contain each perfect square
    List<int> v1 = new List<int>();
    List<int>v2 = new List<int>();
 
    for (int i = 0; i < n; i++)
    {
        b = (float) Math.Sqrt(arr[i]);
        a = (int) b;
 
        // if both a and b are equal then
        // arr[i] is a perfect square
        if (a == b)
        {
            v1.Add(i);
            v2.Add(arr[i]);
        }
    }
 
    // sort second vector
    v2.Sort();
 
    // put the sorted perfect square
    // back into the array
    int j = 0;
    for (int i = 0; i < n; i++)
    {
        if (v1[j] == i)
        {
            arr[i] = v2[j];
            j++;
        }
    }
 
    // print final array
    for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 9, 44, 100, 81, 21, 64 };
    int n = arr.Length;
 
    sortPerfectSquare(arr, n);
}
}
 
// This code is contributed by
// PrinciRaj1992


PHP




<?php
// PHP program to sort all the elements that are
// perfect squares in their relative positions
 
// function to sort all the elements that are
// perfect squares in their relative positions
function sortPerfectSquare($arr, $n)
{
    // v1 will contain index of perfect squares
    // v2 will contain each perfect square
    $v1 = array();
    $v2 = array();
 
    for ( $i = 0; $i < $n; $i++)
    {
        $b = sqrt($arr[$i]);
        $a = (int)$b;
 
        // if both a and b are equal then
        // arr[i] is a perfect square
        if ($a == $b)
        {
            array_push($v1, $i);
            array_push($v2, $arr[$i]);
        }
    }
 
    // sort second vector
    sort($v2);
 
    // put the sorted perfect square
    // back into the array
    $j = 0;
    for ( $i = 0; $i < $n; $i++)
    {
        if ($v1[$j] == $i)
        {
            $arr[$i] = $v2[$j];
            $j++;
        }
    }
 
    // print final array
    for ($i = 0; $i < $n; $i++)
        echo $arr[$i] . " ";
}
 
// Driver Code
$arr = array( 9, 44, 100, 81, 21, 64 );
$n = count($arr);
sortPerfectSquare($arr, $n);
 
// This code is contributed by Rajput-Ji
?>


Javascript




<script>
 
// Javascript program to sort all the elements that are
// perfect squares in their relative positions
 
// function to sort all the elements that are
// perfect squares in their relative positions
function sortPerfectSquare(arr, n)
{
    var a;
    var b;
 
    // v1 will contain index of perfect squares
    // v2 will contain each perfect square
    var v1 = [];
    var v2 = [];
 
    for (var i = 0; i < n; i++) {
        b = Math.sqrt(arr[i]);
        a = parseInt(b);
 
        // if both a and b are equal then
        // arr[i] is a perfect square
        if (a == b) {
            v1.push(i);
            v2.push(arr[i]);
        }
    }
 
    // sort second vector
    v2.sort((a,b) => a-b)
 
    // put the sorted perfect square
    // back into the array
    var j = 0;
    for (var i = 0; i < n; i++) {
        if (v1[j] == i) {
            arr[i] = v2[j];
            j++;
        }
    }
 
    // print final array
    for (var i = 0; i < n; i++)
        document.write( arr[i] + " ");
}
 
// Driver code
var arr = [9, 44, 100, 81, 21, 64 ];
var n = arr.length;
sortPerfectSquare(arr, n);
 
</script>


Output

9 44 64 81 21 100 

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!