Sort an array when two halves are sorted
Given an integer array of which both the first half and second half are sorted. The task is to merge two sorted halves of the array into a single sorted array.
Examples:
Input : A[] = { 2, 3, 8, -1, 7, 10 } Output : -1, 2, 3, 7, 8, 10 Input : A[] = {-4, 6, 9, -1, 3 } Output : -4, -1, 3, 6, 9
Method 1: A Simple Solution is to sort the array using built-in functions (generally an implementation of a quick sort).
Below is the implementation of the above method:
C++
// C++ program to Merge two sorted halves of // array Into Single Sorted Array #include <bits/stdc++.h> using namespace std; void mergeTwoHalf( int A[], int n) { // Sort the given array using sort STL sort(A, A + n); } // Driver code int main() { int A[] = { 2, 3, 8, -1, 7, 10 }; int n = sizeof (A) / sizeof (A[0]); mergeTwoHalf(A, n); // Print sorted Array for ( int i = 0; i < n; i++) cout << A[i] << " " ; return 0; } |
Java
// Java program to Merge two sorted halves of // array Into Single Sorted Array import java.io.*; import java.util.*; class GFG { static void mergeTwoHalf( int [] A, int n) { // Sort the given array using sort STL Arrays.sort(A); } // Driver code static public void main(String[] args) { int [] A = { 2 , 3 , 8 , - 1 , 7 , 10 }; int n = A.length; mergeTwoHalf(A, n); // Print sorted Array for ( int i = 0 ; i < n; i++) System.out.print(A[i] + " " ); } } // This code is contributed by vt_m . |
Python3
# Python program to Merge two sorted # halves of array Into Single Sorted Array def mergeTwoHalf(A, n): # Sort the given array using sort STL A.sort() # Driver Code if __name__ = = '__main__' : A = [ 2 , 3 , 8 , - 1 , 7 , 10 ] n = len (A) mergeTwoHalf(A, n) # Print sorted Array for i in range (n): print (A[i], end = " " ) # This code is contributed by 29AjayKumar |
C#
// C# program to Merge two sorted halves of // array Into Single Sorted Array using System; class GFG { static void mergeTwoHalf( int [] A, int n) { // Sort the given array using sort STL Array.Sort(A); } // Driver code static public void Main() { int [] A = { 2, 3, 8, -1, 7, 10 }; int n = A.Length; mergeTwoHalf(A, n); // Print sorted Array for ( int i = 0; i < n; i++) Console.Write(A[i] + " " ); } } // This code is contributed by vt_m . |
PHP
<?php // PHP program to Merge two sorted halves // of array Into Single Sorted Array function mergeTwoHalf(& $A , $n ) { // Sort the given array using sort STL sort( $A , 0); } // Driver Code $A = array (2, 3, 8, -1, 7, 10); $n = sizeof( $A ); mergeTwoHalf( $A , $n ); // Print sorted Array for ( $i = 0; $i < $n ; $i ++) echo $A [ $i ] . " " ; // This code is contributed // by Akanksha Rai ?> |
Javascript
<script> // Javascript program to Merge two sorted halves of // array Into Single Sorted Array function mergeTwoHalf(A, n) { // Sort the given array using sort function A.sort((a,b) => a-b); } // Driver code var A = [ 2, 3, 8, -1, 7, 10 ]; var n = A.length; mergeTwoHalf(A, n); // Print sorted Array for ( var i = 0; i < n; i++) document.write( A[i] + " " ); // This code is contributed by itsok. </script> |
-1 2 3 7 8 10
Time Complexity: best & average case,
worst case (for quicksort)
Space Complexity: depending on the case & implementation (for quicksort)
For more details, check out the GFG article on Quicksort.
Method 2: A more efficient solution is to use an auxiliary array which is very similar to the Merge Function of Merge sort.
Below is the implementation of the above approach :
C++
// C++ program to Merge Two Sorted Halves Of // Array Into Single Sorted Array #include <bits/stdc++.h> using namespace std; // Merge two sorted halves of Array into single // sorted array void mergeTwoHalf( int A[], int n) { int half_i = 0; // starting index of second half // Temp Array store sorted resultant array int temp[n]; // First Find the point where array is divide // into two half for ( int i = 0; i < n - 1; i++) { if (A[i] > A[i + 1]) { half_i = i + 1; break ; } } // If Given array is all-ready sorted if (half_i == 0) return ; // Merge two sorted arrays in single sorted array int i = 0, j = half_i, k = 0; while (i < half_i && j < n) { if (A[i] < A[j]) temp[k++] = A[i++]; else temp[k++] = A[j++]; } // Copy the remaining elements of A[i to half_! ] while (i < half_i) temp[k++] = A[i++]; // Copy the remaining elements of A[ half_! to n ] while (j < n) temp[k++] = A[j++]; for ( int i = 0; i < n; i++) A[i] = temp[i]; } // Driver code int main() { int A[] = { 2, 3, 8, -1, 7, 10 }; int n = sizeof (A) / sizeof (A[0]); mergeTwoHalf(A, n); // Print sorted Array for ( int i = 0; i < n; i++) cout << A[i] << " " ; return 0; } |
Java
// Java program to Merge Two Sorted Halves Of // Array Into Single Sorted Array import java.io.*; class GFG { // Merge two sorted halves of Array // into single sorted array static void mergeTwoHalf( int [] A, int n) { int half_i = 0 ; // starting index of second half int i; // Temp Array store sorted resultant array int [] temp = new int [n]; // First Find the point where array is divide // into two half for (i = 0 ; i < n - 1 ; i++) { if (A[i] > A[i + 1 ]) { half_i = i + 1 ; break ; } } // If Given array is all-ready sorted if (half_i == 0 ) return ; // Merge two sorted arrays in single sorted array i = 0 ; int j = half_i; int k = 0 ; while (i < half_i && j < n) { if (A[i] < A[j]) temp[k++] = A[i++]; else temp[k++] = A[j++]; } // Copy the remaining elements of A[i to half_! ] while (i < half_i) temp[k++] = A[i++]; // Copy the remaining elements of A[ half_! to n ] while (j < n) temp[k++] = A[j++]; for (i = 0 ; i < n; i++) A[i] = temp[i]; } // Driver code static public void main(String[] args) { int [] A = { 2 , 3 , 8 , - 1 , 7 , 10 }; int n = A.length; mergeTwoHalf(A, n); // Print sorted Array for ( int i = 0 ; i < n; i++) System.out.print(A[i] + " " ); } } // This code is contributed by vt_m . |
Python3
# Python3 program to Merge Two Sorted Halves Of # Array Into Single Sorted Array # Merge two sorted halves of Array into single # sorted array def mergeTwoHalf(A, n): # Starting index of second half half_i = 0 # Temp Array store sorted resultant array temp = [ 0 for i in range (n)] # First Find the point where array is # divide into two half for i in range (n - 1 ): if (A[i] > A[i + 1 ]): half_i = i + 1 break # If Given array is all-ready sorted if (half_i = = 0 ): return # Merge two sorted arrays in single # sorted array i = 0 j = half_i k = 0 while (i < half_i and j < n): if (A[i] < A[j]): temp[k] = A[i] k + = 1 i + = 1 else : temp[k] = A[j] k + = 1 j + = 1 # Copy the remaining elements of A[i to half_! ] while i < half_i: temp[k] = A[i] k + = 1 i + = 1 # Copy the remaining elements of A[ half_! to n ] while (j < n): temp[k] = A[j] k + = 1 j + = 1 for i in range (n): A[i] = temp[i] # Driver code A = [ 2 , 3 , 8 , - 1 , 7 , 10 ] n = len (A) mergeTwoHalf(A, n) # Print sorted Array print ( * A, sep = ' ' ) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program to Merge Two Sorted Halves Of // Array Into Single Sorted Array using System class GFG { // Merge two sorted halves of Array // into single sorted array static void mergeTwoHalf( int [] A, int n) { int half_i = 0 // starting index of second half int i // Temp Array store sorted resultant array int [] temp = new int [n] // First Find the point where array is divide // into two half for (i = 0 i < n - 1 i++) { if (A[i] > A[i + 1]) { half_i = i + 1 break } } // If Given array is all-ready sorted if (half_i == 0) return // Merge two sorted arrays in single sorted // array i = 0 int j = half_i int k = 0 while (i < half_i & &j < n) { if (A[i] < A[j]) temp[k++] = A[i++] else temp[k++] = A[j++] } // Copy the remaining elements of A[i to half_!] while (i < half_i) temp[k++] = A[i++] // Copy the remaining elements of A[half_! // to n] while (j < n) temp[k++] = A[j++] for (i = 0 i < n i++) A[i] = temp[i] } // Driver code static public void Main() { int [] A = { 2, 3, 8, -1, 7, 10 } int n = A.Length mergeTwoHalf(A, n) // Print sorted Array for ( int i = 0 i < n i++) Console.Write(A[i] + " " ) } } // This code is contributed by vt_m . |
Javascript
<script> // JavaScript program to Merge Two Sorted Halves Of // Array Into Single Sorted Array // Merge two sorted halves of Array into single // sorted array function mergeTwoHalf(A, n) { let half_i = 0; // starting index of second half // Temp Array store sorted resultant array let temp = new Array(n); temp.fill(0); // First Find the point where array is divide // into two half for (let i = 0; i < n - 1; i++) { if (A[i] > A[i + 1]) { half_i = i + 1; break ; } } // If Given array is all-ready sorted if (half_i == 0) return ; // Merge two sorted arrays in single sorted array let i = 0, j = half_i, k = 0; while (i < half_i && j < n) { if (A[i] < A[j]) temp[k++] = A[i++]; else temp[k++] = A[j++]; } // Copy the remaining elements of A[i to half_! ] while (i < half_i) temp[k++] = A[i++]; // Copy the remaining elements of A[ half_! to n ] while (j < n) temp[k++] = A[j++]; for (let i = 0; i < n; i++) A[i] = temp[i]; } let A = [ 2, 3, 8, -1, 7, 10 ]; let n = A.length; mergeTwoHalf(A, n); // Print sorted Array for (let i = 0; i < n; i++) document.write(A[i] + " " ); </script> |
-1 2 3 7 8 10
Time Complexity: O(n)
Space Complexity:
*** QuickLaTeX cannot compile formula: *** Error message: Error: Nothing to show, formula is empty
O(n)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...