# Smallest subarray such that all elements are greater than K

• Difficulty Level : Basic
• Last Updated : 04 Jul, 2022

Given an array of N integers and a number K, the task is to find the length of the smallest subarray in which all the elements are greater than K. If there is no such subarray possible, then print -1.
Examples:

Input: a[] = {3, 4, 5, 6, 7, 2, 10, 11}, K = 5
Output: 1
The subarray is {10}
Input: a[] = {1, 2, 3}, K = 13
Output: -1

Approach: The task is to find the smallest subarray with all elements greater than K. Since smallest subarray can be of size 1. So, just check if there exists any element in the array greater than K. If yes then print “1” else print “-1”.
Below is the implementation of the above approach:

## C++

 `// C++ program to print the length of the shortest` `// subarray with all elements greater than X` `#include ` `using` `namespace` `std;`   `// Function to return shortest array` `int` `smallestSubarray(``int` `a[], ``int` `n, ``int` `x)` `{` `    ``int` `count = 0, length = 0;`   `    ``// Iterate in the array` `    ``for` `(``int` `i = 0; i < n; i++) {`   `        ``// check if array element` `        ``// greater than X or not` `        ``if` `(a[i] > x) {` `            ``return` `1;` `        ``}` `    ``}`   `    ``return` `-1;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `a[] = { 1, 22, 3 };` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a);` `    ``int` `k = 13;`   `    ``cout << smallestSubarray(a, n, k);`   `    ``return` `0;` `}`

## Java

 `//  Java program to print the length of the shortest` `// subarray with all elements greater than X`   `import` `java.io.*;`   `class` `GFG {`   `// Function to return shortest array` `static` `int` `smallestSubarray(``int` `a[], ``int` `n, ``int` `x)` `{` `    ``int` `count = ``0``, length = ``0``;`   `    ``// Iterate in the array` `    ``for` `(``int` `i = ``0``; i < n; i++) {`   `        ``// check if array element` `        ``// greater than X or not` `        ``if` `(a[i] > x) {` `            ``return` `1``;` `        ``}` `    ``}`   `    ``return` `-``1``;` `}`   `// Driver Code` `    ``public` `static` `void` `main (String[] args) {` `    ``int` `a[] = { ``1``, ``22``, ``3` `};` `    ``int` `n = a.length;` `    ``int` `k = ``13``;`   `    ``System.out.println(smallestSubarray(a, n, k));` `            ``}` `}` `// This code has been contributed by anuj_67..`

## Python3

 `# Python 3 program to print the ` `# length of the shortest subarray ` `# with all elements greater than X `   `# Function to return shortest array ` `def` `smallestSubarray(a, n, k):` `    `  `    ``# Iterate in the array` `    ``for` `i ``in` `range``(n):`   `        ``# check if array element ` `        ``# greater than X or not ` `        ``if` `a[i] > k:` `            ``return` `1` `    ``return` `-``1`   `# Driver Code ` `a ``=` `[``1``, ``22``, ``3``]` `n ``=` `len``(a)` `k ``=` `13` `print``(smallestSubarray(a, n, k))`   `# This code is contributed ` `# by Shrikant13`

## C#

 `using` `System;`   `class` `GFG` `{` `    `  `// Function to return shortest array` `static` `int` `smallestSubarray(``int` `[]a, ` `                            ``int` `n, ``int` `x)` `{`   `    ``// Iterate in the array` `    ``for` `(``int` `i = 0; i < n; i++)` `    ``{`   `        ``// check if array element` `        ``// greater than X or not` `        ``if` `(a[i] > x)` `        ``{` `            ``return` `1;` `        ``}` `    ``}`   `    ``return` `-1;` `}`   `// Driver Code` `static` `public` `void` `Main ()` `{` `    ``int` `[]a = { 1, 22, 3 };` `    ``int` `n = a.Length;` `    ``int` `k = 13;` `    `  `    ``Console.WriteLine(smallestSubarray(a, n, k));` `}` `}`   `// This code is contributed by ajit`

## PHP

 ` ``\$x``)` `        ``{ ` `            ``return` `1; ` `        ``} ` `    ``} `   `    ``return` `-1; ` `} `   `// Driver Code ` `\$a` `= ``array``( 1, 22, 3 ); ` `\$n` `= sizeof(``\$a``); ` `\$k` `= 13; `   `echo` `smallestSubarray(``\$a``, ``\$n``, ``\$k``); `   `// This code is contributed by ajit` `?>`

## Javascript

 ``

Output:

`1`

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Recommended Articles
Page :