Smallest possible integer to be added to N-1 elements in array A such that elements of array B are present in A
Given two arrays A[] of length N and B[] of length N-1, the task is to find the smallest positive integer X that is added to every element of A[] except one element, so that all the elements of array B[] are present in array A[]. Assume that finding X is always possible.
Examples:
Input: A[] = {1, 4, 3, 8}, B[] = {15, 8, 11}
Output: 7
Explanation: Adding 7 to every elements of the array A except 3 will give all the elements of array B
Input: A[] = {4, 8}, B[] = {10}
Output: 2
Explanation: Adding 2 to 8 gives 10.
Approach: The idea is to use the greedy approach.
- Sort the arrays A[] and B[]
- On observation, it can be seen that, the value of the X can be either B[0] – A[0] or B[0] – A[1].
- So either A[0] or A[1] is not taken into account and X is added to the rest of the elements.
- Check if both values are valid or not by traversing the array and if both X values are found to be valid then choose the minimum one and print it.
Below is the implementation for the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the smallest positive integer // X such that X is added to every element of A // except one element to give array B void findVal( int A[], int B[], int N) { // Stores the unique elements of array A unordered_set< int > s; for ( int i = 0; i < N; i++) { // Insert A[i] into the set s s.insert(A[i]); } // Sort array A[] sort(A, A + N); // Sort array B[] sort(B, B + N - 1); // Assume X value as B[0] - A[1] int X = B[0] - A[1]; // Check if X value assumed is negative or 0 if (X <= 0) // Update the X value to B[0] - A[0] X = B[0] - A[0]; else { for ( int i = 0; i < N - 1; i++) { // If assumed value is wrong if (s.count(B[i] - X) == 0) { // Update X value X = B[0] - A[0]; break ; } } } cout << X << endl; } // Driver Code int main() { int A[] = { 1, 4, 3, 8 }; int B[] = { 15, 8, 11 }; int N = sizeof (A) / sizeof (A[0]); findVal(A, B, N); return 0; } |
Java
// Java implementation for the above approach import java.util.*; public class GFG { // Function to find the smallest positive integer // X such that X is added to every element of A // except one element to give array B static void findVal( int []A, int []B, int N) { // Stores the unique elements of array A HashSet<Integer> s = new HashSet<Integer>(); for ( int i = 0 ; i < N; i++) { // Insert A[i] into the set s s.add(A[i]); } // Sort array A[] Arrays.sort(A); // Sort array B[] Arrays.sort(B); // Assume X value as B[0] - A[1] int X = B[ 0 ] - A[ 1 ]; // Check if X value assumed is negative or 0 if (X <= 0 ) // Update the X value to B[0] - A[0] X = B[ 0 ] - A[ 0 ]; else { for ( int i = 0 ; i < N - 1 ; i++) { // If assumed value is wrong if (s.contains(B[i] - X) == false ) { // Update X value X = B[ 0 ] - A[ 0 ]; break ; } } } System.out.println(X); } // Driver Code public static void main(String args[]) { int []A = { 1 , 4 , 3 , 8 }; int []B = { 15 , 8 , 11 }; int N = A.length; findVal(A, B, N); } } // This code is contributed by Samim Hossain Mondal |
Python3
# Python 3 program for the above approach # Function to find the smallest positive integer # X such that X is added to every element of A # except one element to give array B def findVal(A, B, N): # Stores the unique elements of array A s = set () for i in range (N): # Insert A[i] into the set s s.add(A[i]) # Sort array A[] A.sort() # Sort array B[] B.sort() # Assume X value as B[0] - A[1] X = B[ 0 ] - A[ 1 ] # Check if X value assumed is negative or 0 if (X < = 0 ): # Update the X value to B[0] - A[0] X = B[ 0 ] - A[ 0 ] else : for i in range (N - 1 ): # If assumed value is wrong if (B[i] - X not in s): # Update X value X = B[ 0 ] - A[ 0 ] break print (X) # Driver Code if __name__ = = '__main__' : A = [ 1 , 4 , 3 , 8 ] B = [ 15 , 8 , 11 ] N = len (A) findVal(A, B, N) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# implementation for the above approach using System; using System.Collections.Generic; class GFG { // Function to find the smallest positive integer // X such that X is added to every element of A // except one element to give array B static void findVal( int []A, int []B, int N) { // Stores the unique elements of array A HashSet< int > s = new HashSet< int >(); for ( int i = 0; i < N; i++) { // Insert A[i] into the set s s.Add(A[i]); } // Sort array A[] Array.Sort(A); // Sort array B[] Array.Sort(B); // Assume X value as B[0] - A[1] int X = B[0] - A[1]; // Check if X value assumed is negative or 0 if (X <= 0) // Update the X value to B[0] - A[0] X = B[0] - A[0]; else { for ( int i = 0; i < N - 1; i++) { // If assumed value is wrong if (s.Contains(B[i] - X) == false ) { // Update X value X = B[0] - A[0]; break ; } } } Console.Write(X); } // Driver Code public static void Main() { int []A = { 1, 4, 3, 8 }; int []B = { 15, 8, 11 }; int N = A.Length; findVal(A, B, N); } } // This code is contributed by Samim Hossain Mondal |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to find the smallest positive integer // X such that X is added to every element of A // except one element to give array B function findVal(A, B, N) { // Stores the unique elements of array A let s = new Set(); for (let i = 0; i < N; i++) { // Insert A[i] into the set s s.add(A[i]); } // Sort array A[] A.sort( function (a, b) { return a - b }); // Sort array B[] B.sort( function (a, b) { return a - b }) // Assume X value as B[0] - A[1] let X = B[0] - A[1]; // Check if X value assumed is negative or 0 if (X <= 0) // Update the X value to B[0] - A[0] X = B[0] - A[0]; else { for (let i = 0; i < N - 1; i++) { // If assumed value is wrong if (s.has(B[i] - X) == false ) { // Update X value X = B[0] - A[0]; break ; } } } document.write(X); } // Driver Code let A = [1, 4, 3, 8]; let B = [15, 8, 11]; let N = A.length; findVal(A, B, N); // This code is contributed by Potta Lokesh </script> |
Output
7
Time Complexity: O(N log N)
Auxiliary Space: O(N)
Please Login to comment...