Open in App
Not now

# Sieve of Sundaram to print all primes smaller than n

• Difficulty Level : Medium
• Last Updated : 03 Jan, 2023

Given a number n, print all primes smaller than or equal to n.

Examples:

```Input:  n = 10
Output: 2, 3, 5, 7

Input:  n = 20
Output: 2, 3, 5, 7, 11, 13, 17, 19```

We have discussed Sieve of Eratosthenes algorithm for the above task.

Below is Sieve of Sundaram algorithm.

```printPrimes(n)
[Prints all prime numbers smaller than n]

1) In general Sieve of Sundaram, produces primes smaller than
(2*x + 2) for given number x. Since we want primes
smaller than n, we reduce n-1 to half. We call it nNew.
nNew = (n-1)/2;
For example, if n = 102, then nNew = 50.
if n = 103, then nNew = 51

2) Create an array marked[n] that is going
to be used to separate numbers of the form i+j+2ij from
others where  1 <= i <= j

3) Initialize all entries of marked[] as false.

4) // Mark all numbers of the form i + j + 2ij as true
// where 1 <= i <= j
Loop for i=1 to nNew
a) j = i;
b) Loop While (i + j + 2*i*j)  2, then print 2 as first prime.

6) Remaining primes are of the form 2i + 1 where i is
index of NOT marked numbers. So print 2i + 1 for all i
such that marked[i] is false. ```

Below is the implementation of the above algorithm :

## C++

 `// C++ program to print primes smaller than n using` `// Sieve of Sundaram.` `#include ` `using` `namespace` `std;`   `// Prints all prime numbers smaller` `int` `SieveOfSundaram(``int` `n)` `{` `    ``// In general Sieve of Sundaram, produces primes smaller` `    ``// than (2*x + 2) for a number given number x.` `    ``// Since we want primes smaller than n, we reduce n to half` `    ``int` `nNew = (n-1)/2;`   `    ``// This array is used to separate numbers of the form i+j+2ij` `    ``// from others where  1 <= i <= j` `    ``bool` `marked[nNew + 1];`   `    ``// Initialize all elements as not marked` `    ``memset``(marked, ``false``, ``sizeof``(marked));`   `    ``// Main logic of Sundaram.  Mark all numbers of the` `    ``// form i + j + 2ij as true where 1 <= i <= j` `    ``for` `(``int` `i=1; i<=nNew; i++)` `        ``for` `(``int` `j=i; (i + j + 2*i*j) <= nNew; j++)` `            ``marked[i + j + 2*i*j] = ``true``;`   `    ``// Since 2 is a prime number` `    ``if` `(n > 2)` `        ``cout << 2 << ``" "``;`   `    ``// Print other primes. Remaining primes are of the form` `    ``// 2*i + 1 such that marked[i] is false.` `    ``for` `(``int` `i=1; i<=nNew; i++)` `        ``if` `(marked[i] == ``false``)` `            ``cout << 2*i + 1 << ``" "``;` `}`   `// Driver program to test above` `int` `main(``void``)` `{` `    ``int` `n = 20;` `    ``SieveOfSundaram(n);` `    ``return` `0;` `}`

## Java

 `// Java program to print primes smaller` `// than n using Sieve of Sundaram.` `import` `java.util.Arrays;` `class` `GFG {`   `// Prints all prime numbers smaller` `static` `int` `SieveOfSundaram(``int` `n) {`   `    ``// In general Sieve of Sundaram, produces ` `    ``// primes smaller than (2*x + 2) for a number` `    ``// given number x. Since we want primes ` `    ``// smaller than n, we reduce n to half` `    ``int` `nNew = (n - ``1``) / ``2``;`   `    ``// This array is used to separate numbers of the ` `    ``// form i+j+2ij from others where 1 <= i <= j` `    ``boolean` `marked[] = ``new` `boolean``[nNew + ``1``];`   `    ``// Initialize all elements as not marked` `    ``Arrays.fill(marked, ``false``);`   `    ``// Main logic of Sundaram. Mark all numbers of the` `    ``// form i + j + 2ij as true where 1 <= i <= j` `    ``for` `(``int` `i = ``1``; i <= nNew; i++)` `    ``for` `(``int` `j = i; (i + j + ``2` `* i * j) <= nNew; j++)` `        ``marked[i + j + ``2` `* i * j] = ``true``;`   `    ``// Since 2 is a prime number` `    ``if` `(n > ``2``)` `    ``System.out.print(``2` `+ ``" "``);`   `    ``// Print other primes. Remaining primes are of ` `    ``// the form 2*i + 1 such that marked[i] is false.` `    ``for` `(``int` `i = ``1``; i <= nNew; i++)` `    ``if` `(marked[i] == ``false``)` `        ``System.out.print(``2` `* i + ``1` `+ ``" "``);` `    ``return` `-``1``;` `}`   `// Driver code` `public` `static` `void` `main(String[] args) {` `    ``int` `n = ``20``;` `    ``SieveOfSundaram(n);` `}` `}` `// This code is contributed by Anant Agarwal.`

## Python3

 `# Python3 program to print ` `# primes smaller than n using` `# Sieve of Sundaram.`   `# Prints all prime numbers smaller` `def` `SieveOfSundaram(n):` `    `  `    ``# In general Sieve of Sundaram, ` `    ``# produces primes smaller` `    ``# than (2*x + 2) for a number ` `    ``# given number x. Since we want` `    ``# primes smaller than n, we ` `    ``# reduce n to half` `    ``nNew ``=` `int``((n ``-` `1``) ``/` `2``);`   `    ``# This array is used to separate ` `    ``# numbers of the form i+j+2ij` `    ``# from others where 1 <= i <= j` `    ``# Initialize all elements as not marked` `    ``marked ``=` `[``0``] ``*` `(nNew ``+` `1``);`   `    ``# Main logic of Sundaram. Mark all ` `    ``# numbers of the form i + j + 2ij ` `    ``# as true where 1 <= i <= j` `    ``for` `i ``in` `range``(``1``, nNew ``+` `1``):` `        ``j ``=` `i;` `        ``while``((i ``+` `j ``+` `2` `*` `i ``*` `j) <``=` `nNew):` `            ``marked[i ``+` `j ``+` `2` `*` `i ``*` `j] ``=` `1``;` `            ``j ``+``=` `1``;`   `    ``# Since 2 is a prime number` `    ``if` `(n > ``2``):` `        ``print``(``2``, end ``=` `" "``);`   `    ``# Print other primes. Remaining ` `    ``# primes are of the form 2*i + 1 ` `    ``# such that marked[i] is false.` `    ``for` `i ``in` `range``(``1``, nNew ``+` `1``):` `        ``if` `(marked[i] ``=``=` `0``):` `            ``print``((``2` `*` `i ``+` `1``), end ``=` `" "``);`   `# Driver Code` `n ``=` `20``;` `SieveOfSundaram(n);`   `# This code is contributed by mits`

## C#

 `// C# program to print primes smaller` `// than n using Sieve of Sundaram.` `using` `System;`   `class` `GFG {`   `// Prints all prime numbers smaller` `static` `int` `SieveOfSundaram(``int` `n) ` `{`   `    ``// In general Sieve of Sundaram, produces ` `    ``// primes smaller than (2*x + 2) for a number` `    ``// given number x. Since we want primes ` `    ``// smaller than n, we reduce n to half` `    ``int` `nNew = (n - 1) / 2;`   `    ``// This array is used to separate` `    ``// numbers of the form i+j+2ij from ` `    ``// others where 1 <= i <= j` `    ``bool` `[]marked = ``new` `bool``[nNew + 1];`   `    ``// Initialize all elements as not marked` `    ``for` `(``int` `i=0;i 2)` `    ``Console.Write(2 + ``" "``);`   `    ``// Print other primes. ` `    ``// Remaining primes are of ` `    ``// the form 2*i + 1 such` `    ``// that marked[i] is false.` `    ``for` `(``int` `i = 1; i <= nNew; i++)` `    ``if` `(marked[i] == ``false``)` `        ``Console.Write(2 * i + 1 + ``" "``);` `    ``return` `-1;` `}`   `// Driver code` `public` `static` `void` `Main() ` `{` `    ``int` `n = 20;` `    ``SieveOfSundaram(n);` `}` `}`   `// This code is contributed by nitin mittal`

## PHP

 ` 2)` `        ``echo` `"2 "``;`   `    ``// Print other primes. Remaining ` `    ``// primes are of the form 2*i + 1` `    ``// such that marked[i] is false.` `    ``for` `(``\$i` `= 1; ``\$i` `<= ``\$nNew``; ``\$i``++)` `        ``if` `(``\$marked``[``\$i``] == false)` `            ``echo` `(2 * ``\$i` `+ 1) . ``" "``;` `} `   `// Driver Code` `\$n` `= 20;` `SieveOfSundaram(``\$n``);`   `// This code is contributed by mits` `?>`

## Javascript

 ``

Output

`2 3 5 7 11 13 17 19 `

Time Complexity: O(n log n)
Auxiliary Space: O(n)

Illustration:
All red entries in below illustration are marked entries. For every remaining (or black) entry x, the number 2x+1 is prime.
Lets see how it works for n=102, we will have the sieve for (n-1)/2 as follows:

Mark all the numbers which can be represented as i + j + 2ij

Now for all the unmarked numbers in the list, find 2x+1 and that will be the prime:
Like 2*1+1=3
2*3+1=7
2*5+1=11
2*6+1=13
2*8+1=17 and so on..
How does this work?
When we produce our final output, we produce all integers of form 2x+1 (i.e., they are odd) except 2 which is handled separately.

```Let q be an integer of the form 2x + 1.

q is excluded if and only if x is of the
form i + j + 2ij. That means,

q = 2(i + j + 2ij) + 1
= (2i + 1)(2j + 1)

So, an odd integer is excluded from the final list if
and only if it has a factorization of the form (2i + 1)(2j + 1)
which is to say, if it has a non-trivial odd factor.

Source: Wiki```

Reference:
https://en.wikipedia.org/wiki/Sieve_of_Sundaram
This article is contributed by Anuj Rathore. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

My Personal Notes arrow_drop_up
Related Articles