Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sierpinski Triangle using Graphics

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Sierpinski triangle is a fractal and attractive fixed set with the overall shape of an equilateral triangle. It subdivides recursively into smaller triangles.

Approach:

  • In the given segment of codes, a triangle is made and then draws out three other adjacent small triangles till the terminating condition which checks out whether the height of the triangle is less than 5 pixels returns true.
  • We only need to verify whether a given triangle is smaller than 5 pixels since beyond that the triangles would start converging at fixed points.
  • A counter colorVal is defined for in response to the aesthetic need of the triangle and in all, it cycles through all the available colours by iterating every triangle set.
  • Using this methodology we can also further implement a fractal zoom and hypothetically provide an infinite zoom later.

Below is the implementation of the above approach:




// C++ code to implement
// Sierpinski Triangle using Graphics
  
#include <math.h>
#include <stdlib.h>
#include <winbgim.h>
  
#define Y 900
#define X 1600
  
// Defining a function to draw a triangle
// with thickness 'delta'
void triangle(float x, float y,
              float h, int colorVal)
{
    setcolor(colorVal % 15 + 1);
  
    for (float delta = 0; delta > -5; delta -= 1) {
        line(x - (h + delta) / sqrt(3),
             y - (h + delta) / 3,
             x + (h + delta) / sqrt(3),
             y - (h + delta) / 3);
        line(x - (h + delta) / sqrt(3),
             y - (h + delta) / 3,
             x,
             y + 2 * (h + delta) / 3);
        line(x,
             y + 2 * (h + delta) / 3,
             x + (h + delta) / sqrt(3),
             y - (h + delta) / 3);
    }
}
  
// Defining a function to draw
// an inverted triangle
// with thickness 'delta'
void trianglev2(float x, float y,
                float h, int colorVal)
{
    setcolor(colorVal % 15 + 1);
  
    for (float delta = 0; delta > -1 + 5; delta -= 1) {
  
        line(x - (h + delta) / sqrt(3),
             y + (h + delta) / 3,
             x + (h + delta) / sqrt(3),
             y + (h + delta) / 3);
        line(x - (h + delta) / sqrt(3),
             y + (h + delta) / 3,
             x,
             y - 2 * (h + delta) / 3);
        line(x,
             y - 2 * (h + delta) / 3,
             x + (h + delta) / sqrt(3),
             y + (h + delta) / 3);
    }
}
  
// A recursive function to draw out
// three adjacent smaller triangles
// while the height is greater than 5 pixels.
int drawTriangles(float x = X / 2,
                  float y = 2 * Y / 3,
                  float h = Y / 2,
                  int colorVal = 0)
{
  
    if (h < 5) {
        return 0;
    }
  
    if (x > 0 && y > 0 && x < X && y < Y) {
        triangle(x, y, h, colorVal);
    }
  
    drawTriangles(x,
                  y - 2 * h / 3,
                  h / 2,
                  colorVal + 1);
    drawTriangles(x - h / sqrt(3),
                  y + h / 3,
                  h / 2,
                  colorVal + 1);
    drawTriangles(x + h / sqrt(3),
                  y + h / 3,
                  h / 2,
                  colorVal + 1);
  
    return 0;
}
  
// Driver code
int main()
{
    initwindow(X, Y);
    trianglev2(X / 2, 2 * Y / 3, Y, 2);
  
    drawTriangles();
    getch();
    closegraph();
  
    return 0;
}


Output:


My Personal Notes arrow_drop_up
Last Updated : 23 Oct, 2019
Like Article
Save Article
Similar Reads