Shortest Path Faster Algorithm
Prerequisites: Bellman-Ford Algorithm
Given a directed weighted graph with V vertices, E edges and a source vertex S. The task is to find the shortest path from the source vertex to all other vertices in the given graph.
Example:
Input: V = 5, S = 1, arr = {{1, 2, 1}, {2, 3, 7}, {2, 4, -2}, {1, 3, 8}, {1, 4, 9}, {3, 4, 3}, {2, 5, 3}, {4, 5, -3}}
Output:
1, 0
2, 1
3, 8
4, -1
5, -4
Explanation: For the given input, the shortest path from 1 to 1 is 0, 1 to 2 is 1 and so on.
Input: V = 5, S = 1, arr = {{1, 2, -1}, {1, 3, 4}, {2, 3, 3}, {2, 4, 2}, {2, 5, 2}, {4, 3, 5}, {4, 2, 1}, {5, 4, 3}}
Output:
1, 0
2, -1
3, 2
4, 1
5, 1
Approach: The shortest path faster algorithm is based on Bellman-Ford algorithm where every vertex is used to relax its adjacent vertices but in SPF algorithm, a queue of vertices is maintained and a vertex is added to the queue only if that vertex is relaxed. This process repeats until no more vertex can be relaxed.
The following steps can be performed to compute the result:
- Create an array d[] to store the shortest distance of all vertex from the source vertex. Initialize this array by infinity except for d[S] = 0 where S is the source vertex.
- Create a queue Q and push starting source vertex in it.
- while Queue is not empty, do the following for each edge(u, v) in the graph
- If d[v] > d[u] + weight of edge(u, v)
- d[v] = d[u] + weight of edge(u, v)
- If vertex v is not present in Queue, then push the vertex v into the Queue.
- while Queue is not empty, do the following for each edge(u, v) in the graph
Note: The term relaxation means updating the cost of all vertices connected to a vertex v if those costs would be improved by including the path via vertex v. This can be understood better from an analogy between the estimate of the shortest path and the length of a helical tension spring, which is not designed for compression. Initially, the cost of the shortest path is an overestimate, likened to a stretched-out spring. As shorter paths are found, the estimated cost is lowered, and the spring is relaxed. Eventually, the shortest path, if one exists, is found and the spring has been relaxed to its resting length.
Below is the implementation of the above approach:
C++
// C++ implementation of SPFA #include <bits/stdc++.h> using namespace std; // Graph is stored as vector of vector of pairs // first element of pair store vertex // second element of pair store weight vector<vector<pair< int , int > >> graph; // Function to add edges in the graph // connecting a pair of vertex(frm) and weight // to another vertex(to) in graph void addEdge( int frm, int to, int weight) { graph[frm].push_back({ to, weight }); } // Function to print shortest distance from source void print_distance( int d[], int V) { cout << "Vertex \t\t Distance" << " from source" << endl; for ( int i = 1; i <= V; i++) { cout << i << " " << d[i] << '\n' ; } } // Function to compute the SPF algorithm void shortestPathFaster( int S, int V) { // Create array d to store shortest distance int d[V + 1]; // Boolean array to check if vertex // is present in queue or not bool inQueue[V + 1] = { false }; // Initialize the distance from source to // other vertex as INT_MAX(infinite) for ( int i = 0; i <= V; i++) { d[i] = INT_MAX; } d[S] = 0; queue< int > q; q.push(S); inQueue[S] = true ; while (!q.empty()) { // Take the front vertex from Queue int u = q.front(); q.pop(); inQueue[u] = false ; // Relaxing all the adjacent edges of // vertex taken from the Queue for ( int i = 0; i < graph[u].size(); i++) { int v = graph[u][i].first; int weight = graph[u][i].second; if (d[v] > d[u] + weight) { d[v] = d[u] + weight; // Check if vertex v is in Queue or not // if not then push it into the Queue if (!inQueue[v]) { q.push(v); inQueue[v] = true ; } } } } // Print the result print_distance(d, V); } // Driver code int main() { int V = 5; int S = 1; graph = vector<vector<pair< int , int >>> (V+1); // Connect vertex a to b with weight w // addEdge(a, b, w) addEdge(1, 2, 1); addEdge(2, 3, 7); addEdge(2, 4, -2); addEdge(1, 3, 8); addEdge(1, 4, 9); addEdge(3, 4, 3); addEdge(2, 5, 3); addEdge(4, 5, -3); // Calling shortestPathFaster function shortestPathFaster(S, V); return 0; } |
Java
// Java implementation of SPFA import java.util.*; class GFG { static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Graph is stored as vector of vector of pairs // first element of pair store vertex // second element of pair store weight static Vector<pair > []graph = new Vector[ 100000 ]; // Function to add edges in the graph // connecting a pair of vertex(frm) and weight // to another vertex(to) in graph static void addEdge( int frm, int to, int weight) { graph[frm].add( new pair( to, weight )); } // Function to print shortest distance from source static void print_distance( int d[], int V) { System.out.print( "Vertex \t\t Distance" + " from source" + "\n" ); for ( int i = 1 ; i <= V; i++) { System.out.printf( "%d \t\t %d\n" , i, d[i]); } } // Function to compute the SPF algorithm static void shortestPathFaster( int S, int V) { // Create array d to store shortest distance int []d = new int [V + 1 ]; // Boolean array to check if vertex // is present in queue or not boolean []inQueue = new boolean [V + 1 ]; // Initialize the distance from source to // other vertex as Integer.MAX_VALUE(infinite) for ( int i = 0 ; i <= V; i++) { d[i] = Integer.MAX_VALUE; } d[S] = 0 ; Queue<Integer> q = new LinkedList<>(); q.add(S); inQueue[S] = true ; while (!q.isEmpty()) { // Take the front vertex from Queue int u = q.peek(); q.remove(); inQueue[u] = false ; // Relaxing all the adjacent edges of // vertex taken from the Queue for ( int i = 0 ; i < graph[u].size(); i++) { int v = graph[u].get(i).first; int weight = graph[u].get(i).second; if (d[v] > d[u] + weight) { d[v] = d[u] + weight; // Check if vertex v is in Queue or not // if not then push it into the Queue if (!inQueue[v]) { q.add(v); inQueue[v] = true ; } } } } // Print the result print_distance(d, V); } // Driver code public static void main(String[] args) { int V = 5 ; int S = 1 ; for ( int i = 0 ; i < graph.length; i++) { graph[i] = new Vector<pair>(); } // Connect vertex a to b with weight w // addEdge(a, b, w) addEdge( 1 , 2 , 1 ); addEdge( 2 , 3 , 7 ); addEdge( 2 , 4 , - 2 ); addEdge( 1 , 3 , 8 ); addEdge( 1 , 4 , 9 ); addEdge( 3 , 4 , 3 ); addEdge( 2 , 5 , 3 ); addEdge( 4 , 5 , - 3 ); // Calling shortestPathFaster function shortestPathFaster(S, V); } } // This code is contributed by 29AjayKumar |
C#
// C# implementation of SPFA using System; using System.Collections.Generic; class GFG { class pair { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Graph is stored as vector of vector of pairs // first element of pair store vertex // second element of pair store weight static List<pair> []graph = new List<pair>[100000]; // Function to add edges in the graph // connecting a pair of vertex(frm) and weight // to another vertex(to) in graph static void addEdge( int frm, int to, int weight) { graph[frm].Add( new pair( to, weight )); } // Function to print shortest distance from source static void print_distance( int []d, int V) { Console.Write( "Vertex \t\t Distance" + " from source" + "\n" ); for ( int i = 1; i <= V; i++) { Console.Write( "{0} \t\t {1}\n" , i, d[i]); } } // Function to compute the SPF algorithm static void shortestPathFaster( int S, int V) { // Create array d to store shortest distance int []d = new int [V + 1]; // Boolean array to check if vertex // is present in queue or not bool []inQueue = new bool [V + 1]; // Initialize the distance from source to // other vertex as int.MaxValue(infinite) for ( int i = 0; i <= V; i++) { d[i] = int .MaxValue; } d[S] = 0; Queue< int > q = new Queue< int >(); q.Enqueue(S); inQueue[S] = true ; while (q.Count!=0) { // Take the front vertex from Queue int u = q.Peek(); q.Dequeue(); inQueue[u] = false ; // Relaxing all the adjacent edges of // vertex taken from the Queue for ( int i = 0; i < graph[u].Count; i++) { int v = graph[u][i].first; int weight = graph[u][i].second; if (d[v] > d[u] + weight) { d[v] = d[u] + weight; // Check if vertex v is in Queue or not // if not then push it into the Queue if (!inQueue[v]) { q.Enqueue(v); inQueue[v] = true ; } } } } // Print the result print_distance(d, V); } // Driver code public static void Main(String[] args) { int V = 5; int S = 1; for ( int i = 0; i < graph.Length; i++) { graph[i] = new List<pair>(); } // Connect vertex a to b with weight w // addEdge(a, b, w) addEdge(1, 2, 1); addEdge(2, 3, 7); addEdge(2, 4, -2); addEdge(1, 3, 8); addEdge(1, 4, 9); addEdge(3, 4, 3); addEdge(2, 5, 3); addEdge(4, 5, -3); // Calling shortestPathFaster function shortestPathFaster(S, V); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of SPFA from collections import deque # Graph is stored as vector of vector of pairs # first element of pair store vertex # second element of pair store weight graph = [[] for _ in range ( 100000 )] # Function to add edges in the graph # connecting a pair of vertex(frm) and weight # to another vertex(to) in graph def addEdge(frm, to, weight): graph[frm].append([to, weight]) # Function to print shortest distance from source def print_distance(d, V): print ( "Vertex" , "\t" , "Distance from source" ) for i in range ( 1 , V + 1 ): print (i, "\t" ,d[i]) # Function to compute the SPF algorithm def shortestPathFaster(S, V): # Create array d to store shortest distance d = [ 10 * * 9 ] * (V + 1 ) # Boolean array to check if vertex # is present in queue or not inQueue = [ False ] * (V + 1 ) d[S] = 0 q = deque() q.append(S) inQueue[S] = True while ( len (q) > 0 ): # Take the front vertex from Queue u = q.popleft() inQueue[u] = False # Relaxing all the adjacent edges of # vertex taken from the Queue for i in range ( len (graph[u])): v = graph[u][i][ 0 ] weight = graph[u][i][ 1 ] if (d[v] > d[u] + weight): d[v] = d[u] + weight # Check if vertex v is in Queue or not # if not then append it into the Queue if (inQueue[v] = = False ): q.append(v) inQueue[v] = True # Print the result print_distance(d, V) # Driver code if __name__ = = '__main__' : V = 5 S = 1 # Connect vertex a to b with weight w # addEdge(a, b, w) addEdge( 1 , 2 , 1 ) addEdge( 2 , 3 , 7 ) addEdge( 2 , 4 , - 2 ) addEdge( 1 , 3 , 8 ) addEdge( 1 , 4 , 9 ) addEdge( 3 , 4 , 3 ) addEdge( 2 , 5 , 3 ) addEdge( 4 , 5 , - 3 ) # Calling shortestPathFaster function shortestPathFaster(S, V) # This code is contributed by mohit kumar 29 |
Javascript
<script> // JavaScript implementation of SPFA // Graph is stored as vector of vector of pairs // first element of pair store vertex // second element of pair store weight let graph= new Array(100000); // Function to add edges in the graph // connecting a pair of vertex(frm) and weight // to another vertex(to) in graph function addEdge(frm,to,weight) { graph[frm].push([to, weight ]); } // Function to print shortest distance from source function print_distance(d,V) { document.write( "Vertex" , " " , "Distance" + " from source" + "<br>" ); for (let i = 1; i <= V; i++) { document.write( i+ " " + d[i]+ "<br>" ); } } // Function to compute the SPF algorithm function shortestPathFaster(S,V) { // Create array d to store shortest distance let d = new Array(V + 1); // Boolean array to check if vertex // is present in queue or not let inQueue = new Array(V + 1); // Initialize the distance from source to // other vertex as Integer.MAX_VALUE(infinite) for (let i = 0; i <= V; i++) { d[i] = Number.MAX_VALUE; } d[S] = 0; let q = []; q.push(S); inQueue[S] = true ; while (q.length!=0) { // Take the front vertex from Queue let u = q[0]; q.shift(); inQueue[u] = false ; // Relaxing all the adjacent edges of // vertex taken from the Queue for (let i = 0; i < graph[u].length; i++) { let v = graph[u][i][0]; let weight = graph[u][i][1]; if (d[v] > d[u] + weight) { d[v] = d[u] + weight; // Check if vertex v is in Queue or not // if not then push it into the Queue if (!inQueue[v]) { q.push(v); inQueue[v] = true ; } } } } // Print the result print_distance(d, V); } // Driver code let V = 5; let S = 1; for (let i = 0; i < graph.length; i++) { graph[i] = []; } // Connect vertex a to b with weight w // addEdge(a, b, w) addEdge(1, 2, 1); addEdge(2, 3, 7); addEdge(2, 4, -2); addEdge(1, 3, 8); addEdge(1, 4, 9); addEdge(3, 4, 3); addEdge(2, 5, 3); addEdge(4, 5, -3); // Calling shortestPathFaster function shortestPathFaster(S, V); // This code is contributed by unknown2108 </script> |
Vertex Distance from source 1 0 2 1 3 8 4 -1 5 -4
Time Complexity:
Average Time Complexity: O(|E|)
Worstcase Time Complexity: O(|V|.|E|)
Space complexity: O(V),The space complexity is O(V) since we need to store the distances for each vertex in an array.
Note: Bound on average runtime has not been proved yet.
References: Shortest Path Faster Algorithm
Please Login to comment...