Series with largest GCD and sum equals to n
Given an integer n, print m increasing numbers such that the sum of m numbers is equal to n and the GCD of m numbers is maximum among all series possible. If no series is possible then print “-1”.
Examples :
Input : n = 24, m = 3 Output : 4 8 12 Explanation : (3, 6, 15) is also a series of m numbers which sums to N, but gcd = 3 (4, 8, 12) has gcd = 4 which is the maximum possible. Input : n = 6 m = 4 Output : -1 Explanation: It is not possible as the least GCD sequence will be 1+2+3+4 which is greater than n, hence print -1.
Approach:
The most common observation is that the gcd of the series will always be a divisor of n. The maximum gcd possible (say b) will be n/sum, where sum is the sum of 1+2+..m.
If b turns out to be 0, then the sum of 1+2+3..+k exceeds n which is invalid, hence output “-1”.
Traverse to find out all the divisors possible, a loop till sqrt(n). If the current divisor is i, the best possible way to take the series will be to consider i, 2*i, 3*i, …(m-1)*i, and their sum is s which is equal to i * (m*(m-1))/2 . The last number will be n-s.
Along with i being the divisor, n/i will be the other divisor so check for that also.
Take maximum of possible divisor possible (say r) which should be less than or equals to b and print the sequence as r, 2*r, … (m-1)*r, n—s.
If no such divisors are found simply output “-1”.
C++
// CPP program to find the series with largest // GCD and sum equals to n #include <bits/stdc++.h> using namespace std; // function to generate and print the sequence void print_sequence( int n, int k) { // stores the maximum gcd that can be // possible of sequence. int b = n / (k * (k + 1) / 2); // if maximum gcd comes out to be // zero then not possible if (b == 0) { cout << -1 << endl; } else { // the smallest gcd possible is 1 int r = 1; // traverse the array to find out // the max gcd possible for ( int x = 1; x * x <= n; x++) { // checks if the number is // divisible or not if (n % x != 0) continue ; // checks if x is smaller than // the max gcd possible and x // is greater than the resultant // gcd till now, then r=x if (x <= b && x > r) r = x; // checks if n/x is smaller than // the max gcd possible and n/x // is greater than the resultant // gcd till now, then r=x if (n / x <= b && n / x > r) r = n / x; } // traverses and prints d, 2d, 3d, // ..., (k-1)·d, for ( int i = 1; i < k; i++) cout << r * i << " " ; // computes the last element of // the sequence n-s. int res = n - (r * (k * (k - 1) / 2)); // prints the last element cout << res << endl; } } // driver program to test the above function int main() { int n = 24; int k = 4; print_sequence(n, k); n = 24, k = 5; print_sequence(n, k); n = 6, k = 4; print_sequence(n, k); } |
Java
// Java program to find the series with // largest GCD and sum equals to n import java.io.*; class GFG { // function to generate and print the sequence static void print_sequence( int n, int k) { // stores the maximum gcd that can be // possible of sequence. int b = n / (k * (k + 1 ) / 2 ); // if maximum gcd comes out to be // zero then not possible if (b == 0 ) { System.out.println( "-1" ); } else { // the smallest gcd possible is 1 int r = 1 ; // traverse the array to find out // the max gcd possible for ( int x = 1 ; x * x <= n; x++) { // checks if the number is // divisible or not if (n % x != 0 ) continue ; // checks if x is smaller than // the max gcd possible and x // is greater than the resultant // gcd till now, then r=x if (x <= b && x > r) r = x; // checks if n/x is smaller than // the max gcd possible and n/x // is greater than the resultant // gcd till now, then r=x if (n / x <= b && n / x > r) r = n / x; } // traverses and prints d, 2d, 3d,..., (k-1) for ( int i = 1 ; i < k; i++) System.out.print(r * i + " " ); // computes the last element of // the sequence n-s. int res = n - (r * (k * (k - 1 ) / 2 )); // prints the last element System.out.println(res); } } // driver program to test the above function public static void main(String[] args) { int n = 24 ; int k = 4 ; print_sequence(n, k); n = 24 ; k = 5 ; print_sequence(n, k); n = 6 ; k = 4 ; print_sequence(n, k); } } // This code is contributed by Prerna Saini |
Python3
# Python3 code to find the series # with largest GCD and sum equals to n def print_sequence(n, k): # stores the maximum gcd that # can be possible of sequence. b = int (n / (k * (k + 1 ) / 2 )); # if maximum gcd comes out to be # zero then not possible if b = = 0 : print ( "-1" ) else : # the smallest gcd possible is 1 r = 1 ; # traverse the array to find out # the max gcd possible x = 1 while x * * 2 < = n: # checks if the number is # divisible or not if n % x ! = 0 : # x = x + 1 continue ; # checks if x is smaller than # the max gcd possible and x # is greater than the resultant # gcd till now, then r=x elif x < = b and x > r: r = x # x = x + 1 # checks if n/x is smaller than # the max gcd possible and n/x # is greater than the resultant # gcd till now, then r=x elif n / x < = b and n / x > r : r = n / x # x = x + 1 x = x + 1 # traverses and prints d, 2d, 3d, # ..., (k-1)·d, i = 1 while i < k : print (r * i, end = " " ) i = i + 1 last_term = n - (r * (k * (k - 1 ) / 2 )) print (last_term) # main driver print_sequence( 24 , 4 ) print_sequence( 24 , 5 ) print_sequence( 6 , 4 ) # This code is contributed by Saloni Gupta |
C#
// C# program to find the series with // largest GCD and sum equals to n using System; class GFG { // function to generate and // print the sequence static void print_sequence( int n, int k) { // stores the maximum gcd that can be // possible of sequence. int b = n / (k * (k + 1) / 2); // if maximum gcd comes out to be // zero then not possible if (b == 0) { Console.Write( "-1" ); } else { // the smallest gcd possible is 1 int r = 1; // traverse the array to find out // the max gcd possible for ( int x = 1; x * x <= n; x++) { // checks if the number is // divisible or not if (n % x != 0) continue ; // checks if x is smaller than // the max gcd possible and x // is greater than the resultant // gcd till now, then r=x if (x <= b && x > r) r = x; // checks if n/x is smaller than // the max gcd possible and n/x // is greater than the resultant // gcd till now, then r=x if (n / x <= b && n / x > r) r = n / x; } // traverses and prints d, 2d, // 3d,..., (k-1) for ( int i = 1; i < k; i++) Console.Write(r * i + " " ); // computes the last element of // the sequence n-s. int res = n - (r * (k * (k - 1) / 2)); // prints the last element Console.WriteLine(res); } } // Driver Code public static void Main() { int n = 24; int k = 4; print_sequence(n, k); n = 24; k = 5; print_sequence(n, k); n = 6; k = 4; print_sequence(n, k); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to find the // series with largest GCD // and sum equals to n // function to generate and // print the sequence function print_sequence( $n , $k ) { // stores the maximum gcd that // can be possible of sequence. $b = (int)( $n / ( $k * ( $k + 1) / 2)); // if maximum gcd comes out to be // zero then not possible if ( $b == 0) { echo (-1); } else { // the smallest gcd possible is 1 $r = 1; // traverse the array to find out // the max gcd possible for ( $x = 1; $x * $x <= $n ; $x ++) { // checks if the number is // divisible or not if ( $n % $x != 0) continue ; // checks if x is smaller than // the max gcd possible and x // is greater than the resultant // gcd till now, then r=x if ( $x <= $b && $x > $r ) $r = $x ; // checks if n/x is smaller than // the max gcd possible and n/x // is greater than the resultant // gcd till now, then r=x if ( $n / $x <= $b && $n / $x > $r ) $r = $n / $x ; } // traverses and prints d, 2d, 3d, // ..., (k-1)·d, for ( $i = 1; $i < $k ; $i ++) echo ( $r * $i . " " ); // computes the last element of // the sequence n-s. $res = $n - ( $r * ( $k * ( $k - 1) / 2)); // prints the last element echo ( $res . "\n" ); } } // Driver Code $n = 24; $k = 4; print_sequence( $n , $k ); $n = 24; $k = 5; print_sequence( $n , $k ); $n = 6; $k = 4; print_sequence( $n , $k ); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find the // series with largest GCD // and sum equals to n // function to generate and // print the sequence function print_sequence(n, k) { // stores the maximum gcd that // can be possible of sequence. let b = parseInt(n / (k * (k + 1) / 2)); // if maximum gcd comes out to be // zero then not possible if (b == 0) { document.write(-1); } else { // the smallest gcd possible is 1 let r = 1; // traverse the array to find out // the max gcd possible for (let x = 1; x * x <= n; x++) { // checks if the number is // divisible or not if (n % x != 0) continue ; // checks if x is smaller than // the max gcd possible and x // is greater than the resultant // gcd till now, then r=x if (x <= b && x > r) r = x; // checks if n/x is smaller than // the max gcd possible and n/x // is greater than the resultant // gcd till now, then r=x if (n / x <= b && n / x > r) r = n / x; } // traverses and prints d, 2d, 3d, // ..., (k-1)·d, for (let i = 1; i < k; i++) document.write(r * i + " " ); // computes the last element of // the sequence n-s. let res = n - (r * (k * (k - 1) / 2)); // prints the last element document.write(res + "<br>" ); } } // Driver Code let n = 24; let k = 4; print_sequence(n, k); n = 24; k = 5; print_sequence(n, k); n = 6; k = 4; print_sequence(n, k); // This code is contributed by _saurabh_jaiswal. </script> |
Output :
2 4 6 12 1 2 3 4 14 -1
Time complexity: O( sqrt (n) )
Auxiliary Space: O(1)
This article is contributed by Raja Vikramaditya. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...