Serialize and Deserialize an N-ary Tree
Given an N-ary tree where every node has at-most N children. How to serialize and deserialize it? Serialization is to store tree in a file so that it can be later restored. The structure of tree must be maintained. Deserialization is reading tree back from file.
This post is mainly an extension of below post.
Serialize and Deserialize a Binary Tree
In an N-ary tree, there are no designated left and right children. An N-ary tree is represented by storing an array or list of child pointers with every node.
The idea is to store an ‘end of children’ marker with every node. The following diagram shows serialization where ‘)’ is used as end of children marker.
Following is the implementation of the above idea.
C++
// A C++ Program serialize and deserialize an N-ary tree #include<cstdio> #define MARKER ')' #define N 5 using namespace std; // A node of N-ary tree struct Node { char key; Node *child[N]; // An array of pointers for N children }; // A utility function to create a new N-ary tree node Node *newNode( char key) { Node *temp = new Node; temp->key = key; for ( int i = 0; i < N; i++) temp->child[i] = NULL; return temp; } // This function stores the given N-ary tree in a file pointed by fp void serialize(Node *root, FILE *fp) { // Base case if (root == NULL) return ; // Else, store current node and recur for its children fprintf (fp, "%c " , root->key); for ( int i = 0; i < N && root->child[i]; i++) serialize(root->child[i], fp); // Store marker at the end of children fprintf (fp, "%c " , MARKER); } // This function constructs N-ary tree from a file pointed by 'fp'. // This function returns 0 to indicate that the next item is a valid // tree key. Else returns 0 int deSerialize(Node *&root, FILE *fp) { // Read next item from file. If there are no more items or next // item is marker, then return 1 to indicate same char val; if ( ! fscanf (fp, "%c " , &val) || val == MARKER ) return 1; // Else create node with this item and recur for children root = newNode(val); for ( int i = 0; i < N; i++) if (deSerialize(root->child[i], fp)) break ; // Finally return 0 for successful finish return 0; } // A utility function to create a dummy tree shown in above diagram Node *createDummyTree() { Node *root = newNode( 'A' ); root->child[0] = newNode( 'B' ); root->child[1] = newNode( 'C' ); root->child[2] = newNode( 'D' ); root->child[0]->child[0] = newNode( 'E' ); root->child[0]->child[1] = newNode( 'F' ); root->child[2]->child[0] = newNode( 'G' ); root->child[2]->child[1] = newNode( 'H' ); root->child[2]->child[2] = newNode( 'I' ); root->child[2]->child[3] = newNode( 'J' ); root->child[0]->child[1]->child[0] = newNode( 'K' ); return root; } // A utility function to traverse the constructed N-ary tree void traverse(Node *root) { if (root) { printf ( "%c " , root->key); for ( int i = 0; i < N; i++) traverse(root->child[i]); } } // Driver program to test above functions int main() { // Let us create an N-ary tree shown in above diagram Node *root = createDummyTree(); // Let us open a file and serialize the tree into the file FILE *fp = fopen ( "tree.txt" , "w" ); if (fp == NULL) { puts ( "Could not open file" ); return 0; } serialize(root, fp); fclose (fp); // Let us deserialize the stored tree into root1 Node *root1 = NULL; fp = fopen ( "tree.txt" , "r" ); deSerialize(root1, fp); printf ( "Constructed N-Ary Tree from file is \n" ); traverse(root1); return 0; } |
Python3
# A Python program to serialize and deserialize an N-ary tree import sys # A node of N-ary tree class Node: def __init__( self , key): self .key = key self .children = [] # A utility function to create a new N-ary tree node def newNode(key): temp = Node(key) return temp # This function stores the given N-ary tree in a file pointed by fp def serialize(root, fp): # Base case if not root: return # Else, store current node and recur for its children fp.write(root.key + " " ) for child in root.children: serialize(child, fp) # Store marker at the end of children fp.write( ") " ) # This function constructs N-ary tree from a file pointed by 'fp'. # This function returns 0 to indicate that the next item is a valid # tree key. Else returns 0 def deSerialize(fp): # Read next item from file. If there are no more items or next # item is marker, then return None to indicate same val = fp.read( 1 ) if not val or val = = ")" : return None # Else create node with this item and recur for children root = newNode(val) while True : child = deSerialize(fp) if not child: break root.children.append(child) # Finally return the node for successful finish return root # A utility function to create a dummy tree shown in above diagram def createDummyTree(): root = newNode( 'A' ) root.children = [newNode( 'B' ), newNode( 'C' ), newNode( 'D' )] root.children[ 0 ].children = [newNode( 'E' ), newNode( 'F' )] root.children[ 2 ].children = [newNode( 'G' ), newNode( 'H' ), newNode( 'I' ), newNode( 'J' )] root.children[ 0 ].children[ 1 ].children = [newNode( 'K' )] return root # A utility function to traverse the constructed N-ary tree def traverse(root): if root: print (root.key, end = " " ) for child in root.children: traverse(child) # Driver program to test above functions def main(): # Let us create an N-ary tree shown in above diagram root = createDummyTree() # Let us open a file and serialize the tree into the file fp = open ( "tree.txt" , "w" ) serialize(root, fp) fp.close() # Let us deserialize the stored tree into root1 fp = open ( "tree.txt" , "r" ) root1 = deSerialize(fp) fp.close() print ( "Constructed N-Ary Tree from file is " ) traverse(root1) if __name__ = = '__main__' : main() |
Java
import java.io.*; public class NAryTreeSerialization { final static int N = 5 ; final static char MARKER = ')' ; // A node of N-ary tree static class Node { char key; Node[] child; // An array of pointers for N children Node( char key) { this .key = key; child = new Node[N]; } } // This function stores the given N-ary tree in a file pointed by fp static void serialize(Node root, PrintWriter writer) { // Base case if (root == null ) { return ; } // Else, store current node and recur for its children writer.print(root.key + " " ); for ( int i = 0 ; i < N && root.child[i] != null ; i++) { serialize(root.child[i], writer); } // Store marker at the end of children writer.print(MARKER + " " ); } // This function constructs N-ary tree from a file pointed by 'reader'. static Node deSerialize(BufferedReader reader) throws IOException { // Read next item from file. If there are no more items or next // item is marker, then return null to indicate same int val = reader.read(); if (val == - 1 || val == MARKER) { return null ; } char c = ( char ) val; // Else create node with this item and recur for children Node root = new Node(c); for ( int i = 0 ; i < N; i++) { root.child[i] = deSerialize(reader); if (root.child[i] == null ) { break ; } } return root; } // A utility function to create a dummy tree shown in above diagram static Node createDummyTree() { Node root = new Node( 'A' ); root.child[ 0 ] = new Node( 'B' ); root.child[ 1 ] = new Node( 'C' ); root.child[ 2 ] = new Node( 'D' ); root.child[ 0 ].child[ 0 ] = new Node( 'E' ); root.child[ 0 ].child[ 1 ] = new Node( 'F' ); root.child[ 2 ].child[ 0 ] = new Node( 'G' ); root.child[ 2 ].child[ 1 ] = new Node( 'H' ); root.child[ 2 ].child[ 2 ] = new Node( 'I' ); root.child[ 2 ].child[ 3 ] = new Node( 'J' ); root.child[ 0 ].child[ 1 ].child[ 0 ] = new Node( 'K' ); return root; } // A utility function to traverse the constructed N-ary tree static void traverse(Node root) { if (root != null ) { System.out.print(root.key + " " ); for ( int i = 0 ; i < N; i++) { traverse(root.child[i]); } } } // Driver program to test above functions public static void main(String[] args) throws IOException { // Let us create an N-ary tree shown in above diagram Node root = createDummyTree(); // Let us open a file and serialize the tree into the file PrintWriter writer = new PrintWriter( new FileWriter( "tree.txt" )); serialize(root, writer); writer.close(); // Let us deserialize the stored tree into root1 Node root1; BufferedReader reader = new BufferedReader( new FileReader( "tree.txt" )); root1 = deSerialize(reader); reader.close(); System.out.println( "Constructed N-Ary Tree from file is: " ); traverse(root1); } } |
C#
using System; using System.IO; public class GFG { const int N = 5; const char MARKER = ')' ; // A node of N-ary tree class Node { public char key; public Node[] child; // An array of pointers for N // children public Node( char key) { this .key = key; child = new Node[N]; } } // This function stores the given N-ary tree in a file // pointed by fp static void serialize(Node root, StreamWriter writer) { // Base case if (root == null ) { return ; } // Else, store current node and recur for its // children writer.Write(root.key + " " ); for ( int i = 0; i < N && root.child[i] != null ; i++) { serialize(root.child[i], writer); } // Store marker at the end of children writer.Write(MARKER + " " ); } // This function constructs N-ary tree from a file // pointed by 'reader'. static Node deSerialize(StreamReader reader) { // Read next item from file. If there are no more // items or next item is marker, then return null to // indicate same int val = reader.Read(); if (val == -1 || val == MARKER) { return null ; } char c = ( char )val; // Else create node with this item and recur for // children Node root = new Node(c); for ( int i = 0; i < N; i++) { root.child[i] = deSerialize(reader); if (root.child[i] == null ) { break ; } } return root; } // A utility function to create a dummy tree shown in // above diagram static Node createDummyTree() { Node root = new Node( 'A' ); root.child[0] = new Node( 'B' ); root.child[1] = new Node( 'C' ); root.child[2] = new Node( 'D' ); root.child[0].child[0] = new Node( 'E' ); root.child[0].child[1] = new Node( 'F' ); root.child[2].child[0] = new Node( 'G' ); root.child[2].child[1] = new Node( 'H' ); root.child[2].child[2] = new Node( 'I' ); root.child[2].child[3] = new Node( 'J' ); root.child[0].child[1].child[0] = new Node( 'K' ); return root; } // A utility function to traverse the constructed N-ary // tree static void traverse(Node root) { if (root != null ) { Console.Write(root.key + " " ); for ( int i = 0; i < N; i++) { traverse(root.child[i]); } } } // Driver program to test above functions static void Main( string [] args) { // Let us create an N-ary tree shown in above // diagram Node root = createDummyTree(); // Let us open a file and serialize the tree into // the file StreamWriter writer = new StreamWriter( "tree.txt" ); serialize(root, writer); writer.Close(); // Let us deserialize the stored tree into root1 Node root1; StreamReader reader = new StreamReader( "tree.txt" ); root1 = deSerialize(reader); reader.Close(); Console.WriteLine( "Constructed N-Ary Tree from file is: " ); traverse(root1); } } |
Constructed N-Ary Tree from file is A B E F K C D G H I J
Time Complexity: O(N), where n is number of nodes.
Auxiliary Space: O(H+N) , where h is height of tree and n is number of nodes.
The above implementation can be optimized in many ways for example by using a vector in place of array of pointers. We have kept it this way to keep it simple to read and understand.
This article is contributed by varun. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...