sciPy stats.zscore() function | Python
scipy.stats.zscore(arr, axis=0, ddof=0) function computes the relative Z-score of the input data, relative to the sample mean and standard deviation.
Its formula:
Parameters :
arr : [array_like] Input array or object for which Z-score is to be calculated.
axis : Axis along which the mean is to be computed. By default axis = 0.
ddof : Degree of freedom correction for Standard Deviation.Results : Z-score of the input data.
Code #1: Working
# stats.zscore() method import numpy as np from scipy import stats arr1 = [[ 20 , 2 , 7 , 1 , 34 ], [ 50 , 12 , 12 , 34 , 4 ]] arr2 = [[ 50 , 12 , 12 , 34 , 4 ], [ 12 , 11 , 10 , 34 , 21 ]] print ( "\narr1 : " , arr1) print ( "\narr2 : " , arr2) print ( "\nZ-score for arr1 : \n" , stats.zscore(arr1)) print ( "\nZ-score for arr1 : \n" , stats.zscore(arr1, axis = 1 )) |
Output :
arr1 : [[20, 2, 7, 1, 34], [50, 12, 12, 34, 4]] arr2 : [[50, 12, 12, 34, 4], [12, 11, 10, 34, 21]] Z-score for arr1 : [[-1. -1. -1. -1. 1.] [ 1. 1. 1. 1. -1.]] Z-score for arr1 : [[ 0.57251144 -0.85876716 -0.46118977 -0.93828264 1.68572813] [ 1.62005758 -0.61045648 -0.61045648 0.68089376 -1.08003838]]
Code #2 : Z-score
import numpy as np from scipy import stats arr2 = [[ 50 , 12 , 12 , 34 , 4 ], [ 12 , 11 , 10 , 34 , 21 ]] print ( "\nZ-score for arr2 : \n" , stats.zscore(arr2, axis = 0 )) print ( "\nZ-score for arr2 : \n" , stats.zscore(arr2, axis = 1 )) |
Output :
Z-score for arr2 : [[ 1. 1. 1. nan -1.] [-1. -1. -1. nan 1.]] Z-score for arr2 : [[ 1.62005758 -0.61045648 -0.61045648 0.68089376 -1.08003838] [-0.61601725 -0.72602033 -0.83602341 1.80405051 0.37401047]]
Please Login to comment...