Skip to content
Related Articles

Related Articles

sciPy stats.obrientransform() function | Python

View Discussion
Improve Article
Save Article
  • Last Updated : 18 Feb, 2019
View Discussion
Improve Article
Save Article

scipy.stats.obrientransform(array) function computes the O’Brien transform on the given data. The main idea of using the O’Brien test is the transformation of original scores so that the transformed scores can reflect the variation of the original scores. An analysis of variance on this transformed scores will then tell differences in the variability (i.e., variance) of the original scores and therefore this analysis will test the homogeneity of variance assumption.

Its formula :

N   = Number of observations
Ma  = Mean of the observations 
SSa = Sum of the squares of observations

Parameters :
array : [array_like] number of arrays

Results : O’Brien transformation of the array

Code #1: Working




# stats.obrientransform() method   
import numpy as np
from scipy import stats
    
arr1 = [20, 2, 7, 1, 34]
arr2 = [50, 12, 12, 34, 4]
  
print ("arr1 : ", arr1)
print ("\narr2 : ", arr2)
  
print("\n O Brien Transform : \n", stats.obrientransform(arr1, arr2)) 
  
transform_arr1, transform_arr2 = stats.obrientransform(arr1, arr2)
  
print("\n O Brien Transform of arr1: \n", transform_arr1) 
print("\n O Brien Transform of arr2: \n", transform_arr2) 


Output :

arr1 : [20, 2, 7, 1, 34]

arr2 : [50, 12, 12, 34, 4]

O Brien Transform :
[[ 42.65 137.15 16.10833333 170.10833333 622.48333333]
[1050.43333333 97.26666667 97.26666667 135.76666667 433.26666667]]

O Brien Transform of arr1:
[ 42.65 137.15 16.10833333 170.10833333 622.48333333]

O Brien Transform of arr2:
[1050.43333333 97.26666667 97.26666667 135.76666667 433.26666667]

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!