Round Robin Scheduling with different arrival times
Prerequisite: Round Robin Scheduling with arrival time as 0
A round-robin scheduling algorithm is used to schedule the process fairly for each job a time slot or quantum and the interrupting the job if it is not completed by then the job come after the other job which is arrived in the quantum time that makes these scheduling fairly.
Note:
- Round-robin is cyclic in nature, so starvation doesn’t occur
- Round-robin is a variant of first come, first served scheduling
- No priority, special importance is given to any process or task
- RR scheduling is also known as Time slicing scheduling
Advantages:
- Each process is served by CPU for a fixed time, so priority is the same for each one
- Starvation does not occur because of its cyclic nature.
Disadvantages:
- Throughput depends on quantum time.
- If the time quantum is too large RR degrades to FCFS.
- If we want to give some process priority, we cannot.
Process | Arrival Time | Burst Time | Completion time | Turn Around Time | Waiting time |
---|---|---|---|---|---|
P1 | 0 | 5 | 12 | 12 | 7 |
P2 | 1 | 4 | 11 | 10 | 6 |
P3 | 2 | 2 | 6 | 4 | 2 |
P4 | 3 | 1 | 9 | 6 | 5 |
Quantum time is 2 this means each process is only executing for 2 units of time at a time.
How to compute these process requests:-
- Take the process which occurs first and start executing the process(for quantum time only).
- Check if any other process request has arrived. If a process request arrives during the quantum time in which another process is executing, then add the new process to the Ready queue
- After the quantum time has passed, check for any processes in the Ready queue. If the ready queue is empty then continue the current process. If the queue not empty and the current process is not complete, then add the current process to the end of the ready queue.
- Take the first process from the Ready queue and start executing it (same rules)
- Repeat all steps above from 2-4
- If the process is complete and the ready queue is empty then the task is complete
After all these we get the three times which are:
- Completion Time: the time taken for a process to complete.
- Turn Around Time: total time the process exists in the system. (completion time – arrival time).
- Waiting Time: total time waiting for their complete execution. (turn around time – burst time ).
How to implement in a programming language
1. Declare arrival[], burst[], wait[], turn[] arrays and initialize them. Also declare a timer variable and initialize it to zero. To sustain the original burst array create another array (temp_burst[]) and copy all the values of burst array in it. 2. To keep a check we create another array of bool type which keeps the record of whether a process is completed or not. we also need to maintain a queue array which contains the process indices (initially the array is filled with 0). 3. Now we increment the timer variable until the first process arrives and when it does, we add the process index to the queue array 4. Now we execute the first process until the time quanta and during that time quanta, we check whether any other process has arrived or not and if it has then we add the index in the queue (by calling the fxn. queueUpdation()). 5. Now, after doing the above steps if a process has finished, we store its exit time and execute the next process in the queue array. Else, we move the currently executed process at the end of the queue (by calling another fxn. queueMaintainence()) when the time slice expires. 6. The above steps are then repeated until all the processes have been completely executed. If a scenario arises where there are some processes left but they have not arrived yet, then we shall wait and the CPU will remain idle during this interval.
Below is the implementation of the above approach:
(For the sake of simplicity, we assume that the arrival times are entered in a sorted way)
C++
C++
//C++ Program for implementing //Round Robin Algorithm //code by sparsh_cbs #include <iostream> using namespace std; void queueUpdation( int queue[], int timer, int arrival[], int n, int maxProccessIndex){ int zeroIndex; for ( int i = 0; i < n; i++){ if (queue[i] == 0){ zeroIndex = i; break ; } } queue[zeroIndex] = maxProccessIndex + 1; } void queueMaintainence( int queue[], int n){ for ( int i = 0; (i < n-1) && (queue[i+1] != 0) ; i++){ int temp = queue[i]; queue[i] = queue[i+1]; queue[i+1] = temp; } } void checkNewArrival( int timer, int arrival[], int n, int maxProccessIndex, int queue[]){ if (timer <= arrival[n-1]){ bool newArrival = false ; for ( int j = (maxProccessIndex+1); j < n; j++){ if (arrival[j] <= timer){ if (maxProccessIndex < j){ maxProccessIndex = j; newArrival = true ; } } } //adds the incoming process to the ready queue //(if any arrives) if (newArrival) queueUpdation(queue,timer,arrival,n, maxProccessIndex); } } //Driver Code int main(){ int n,tq, timer = 0, maxProccessIndex = 0; float avgWait = 0, avgTT = 0; cout << "\nEnter the time quanta : " ; cin>>tq; cout << "\nEnter the number of processes : " ; cin>>n; int arrival[n], burst[n], wait[n], turn[n], queue[n], temp_burst[n]; bool complete[n]; cout << "\nEnter the arrival time of the processes : " ; for ( int i = 0; i < n; i++) cin>>arrival[i]; cout << "\nEnter the burst time of the processes : " ; for ( int i = 0; i < n; i++){ cin>>burst[i]; temp_burst[i] = burst[i]; } for ( int i = 0; i < n; i++){ //Initializing the queue and complete array complete[i] = false ; queue[i] = 0; } while (timer < arrival[0]) //Incrementing Timer until the first process arrives timer++; queue[0] = 1; while ( true ){ bool flag = true ; for ( int i = 0; i < n; i++){ if (temp_burst[i] != 0){ flag = false ; break ; } } if (flag) break ; for ( int i = 0; (i < n) && (queue[i] != 0); i++){ int ctr = 0; while ((ctr < tq) && (temp_burst[queue[0]-1] > 0)){ temp_burst[queue[0]-1] -= 1; timer += 1; ctr++; //Checking and Updating the ready queue until all the processes arrive checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } //If a process is completed then store its exit time //and mark it as completed if ((temp_burst[queue[0]-1] == 0) && (complete[queue[0]-1] == false )){ //turn array currently stores the completion time turn[queue[0]-1] = timer; complete[queue[0]-1] = true ; } //checks whether or not CPU is idle bool idle = true ; if (queue[n-1] == 0){ for ( int i = 0; i < n && queue[i] != 0; i++){ if (complete[queue[i]-1] == false ){ idle = false ; } } } else idle = false ; if (idle){ timer++; checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } //Maintaining the entries of processes //after each premption in the ready Queue queueMaintainence(queue,n); } } for ( int i = 0; i < n; i++){ turn[i] = turn[i] - arrival[i]; wait[i] = turn[i] - burst[i]; } cout << "\nProgram No.\tArrival Time\tBurst Time\tWait Time\tTurnAround Time" << endl; for ( int i = 0; i < n; i++){ cout<<i+1<< "\t\t" <<arrival[i]<< "\t\t" <<burst[i]<< "\t\t" <<wait[i]<< "\t\t" <<turn[i]<<endl; } for ( int i =0; i< n; i++){ avgWait += wait[i]; avgTT += turn[i]; } cout<< "\nAverage wait time : " <<(avgWait/n) << "\nAverage Turn Around Time : " <<(avgTT/n); return 0; } |
Java
//JAVA Program for implementing //Round Robin Algorithm // code by Sparsh_cbs import java.util.*; public class RoundRobin{ private static Scanner inp = new Scanner(System.in); //Driver Code public static void main(String[] args){ int n,tq, timer = 0 , maxProccessIndex = 0 ; float avgWait = 0 , avgTT = 0 ; System.out.print( "\nEnter the time quanta : " ); tq = inp.nextInt(); System.out.print( "\nEnter the number of processes : " ); n = inp.nextInt(); int arrival[] = new int [n]; int burst[] = new int [n]; int wait[] = new int [n]; int turn[] = new int [n]; int queue[] = new int [n]; int temp_burst[] = new int [n]; boolean complete[] = new boolean [n]; System.out.print( "\nEnter the arrival time of the processes : " ); for ( int i = 0 ; i < n; i++) arrival[i] = inp.nextInt(); System.out.print( "\nEnter the burst time of the processes : " ); for ( int i = 0 ; i < n; i++){ burst[i] = inp.nextInt(); temp_burst[i] = burst[i]; } for ( int i = 0 ; i < n; i++){ //Initializing the queue and complete array complete[i] = false ; queue[i] = 0 ; } while (timer < arrival[ 0 ]) //Incrementing Timer until the first process arrives timer++; queue[ 0 ] = 1 ; while ( true ){ boolean flag = true ; for ( int i = 0 ; i < n; i++){ if (temp_burst[i] != 0 ){ flag = false ; break ; } } if (flag) break ; for ( int i = 0 ; (i < n) && (queue[i] != 0 ); i++){ int ctr = 0 ; while ((ctr < tq) && (temp_burst[queue[ 0 ]- 1 ] > 0 )){ temp_burst[queue[ 0 ]- 1 ] -= 1 ; timer += 1 ; ctr++; //Updating the ready queue until all the processes arrive checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } if ((temp_burst[queue[ 0 ]- 1 ] == 0 ) && (complete[queue[ 0 ]- 1 ] == false )){ turn[queue[ 0 ]- 1 ] = timer; //turn currently stores exit times complete[queue[ 0 ]- 1 ] = true ; } //checks whether or not CPU is idle boolean idle = true ; if (queue[n- 1 ] == 0 ){ for ( int k = 0 ; k < n && queue[k] != 0 ; k++){ if (complete[queue[k]- 1 ] == false ){ idle = false ; } } } else idle = false ; if (idle){ timer++; checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } //Maintaining the entries of processes after each premption in the ready Queue queueMaintainence(queue,n); } } for ( int i = 0 ; i < n; i++){ turn[i] = turn[i] - arrival[i]; wait[i] = turn[i] - burst[i]; } System.out.print( "\nProgram No.\tArrival Time\tBurst Time\tWait Time\tTurnAround Time" + "\n" ); for ( int i = 0 ; i < n; i++){ System.out.print(i+ 1 + "\t\t" +arrival[i]+ "\t\t" +burst[i] + "\t\t" +wait[i]+ "\t\t" +turn[i]+ "\n" ); } for ( int i = 0 ; i< n; i++){ avgWait += wait[i]; avgTT += turn[i]; } System.out.print( "\nAverage wait time : " +(avgWait/n) + "\nAverage Turn Around Time : " +(avgTT/n)); } public static void queueUpdation( int queue[], int timer, int arrival[], int n, int maxProccessIndex){ int zeroIndex = - 1 ; for ( int i = 0 ; i < n; i++){ if (queue[i] == 0 ){ zeroIndex = i; break ; } } if (zeroIndex == - 1 ) return ; queue[zeroIndex] = maxProccessIndex + 1 ; } public static void checkNewArrival( int timer, int arrival[], int n, int maxProccessIndex, int queue[]){ if (timer <= arrival[n- 1 ]){ boolean newArrival = false ; for ( int j = (maxProccessIndex+ 1 ); j < n; j++){ if (arrival[j] <= timer){ if (maxProccessIndex < j){ maxProccessIndex = j; newArrival = true ; } } } if (newArrival) //adds the index of the arriving process(if any) queueUpdation(queue,timer,arrival,n, maxProccessIndex); } } public static void queueMaintainence( int queue[], int n){ for ( int i = 0 ; (i < n- 1 ) && (queue[i+ 1 ] != 0 ) ; i++){ int temp = queue[i]; queue[i] = queue[i+ 1 ]; queue[i+ 1 ] = temp; } } } |
Python3
# Python program for implementing Round Robin Algorithm def queueUpdation(queue, timer, arrival, n, maxProccessIndex): zeroIndex = - 1 for i in range (n): if (queue[i] = = 0 ): zeroIndex = i break if (zeroIndex = = - 1 ): return queue[zeroIndex] = maxProccessIndex + 1 def checkNewArrival(timer, arrival, n, maxProccessIndex, queue): if (timer < = arrival[n - 1 ]): newArrival = False for j in range (maxProccessIndex + 1 , n): if (arrival[j] < = timer): if (maxProccessIndex < j): maxProccessIndex = j newArrival = True # adds the index of the arriving process(if any) if (newArrival): queueUpdation(queue, timer, arrival, n, maxProccessIndex) def queueMaintainence(queue, n): for i in range (n - 1 ): if (queue[i + 1 ] ! = 0 ): queue[i], queue[i + 1 ] = queue[i + 1 ], queue[i] timer, maxProccessIndex = 0 , 0 avgWait, avgTT = 0 , 0 print ( "\nEnter the time quanta :" , end = " " ) tq = int ( input ()) print ( "\nEnter the number of processes :" , end = " " ) n = int ( input ()) arrival = [ 0 ] * n burst = [ 0 ] * n wait = [ 0 ] * n turn = [ 0 ] * n queue = [ 0 ] * n temp_burst = [ 0 ] * n complete = [ False ] * n print ( "\nEnter the arrival time of the processes :" , end = " " ) for i in range (n): arrival[i] = int ( input ()) print ( "\nEnter the burst time of the processes :" , end = " " ) for i in range (n): burst[i] = int ( input ()) temp_burst[i] = burst[i] for i in range (n): # Initializing the queue and complete array complete[i] = False queue[i] = 0 while (timer < arrival[ 0 ]): # Incrementing Timer until the first process arrives timer + = 1 queue[ 0 ] = 1 while ( True ): flag = True for i in range (n): if (temp_burst[i] ! = 0 ): flag = False break if (flag): break for i in range (n and queue[i] ! = 0 ): ctr = 0 while ((ctr < tq) and (temp_burst[queue[ 0 ] - 1 ] > 0 )): temp_burst[queue[ 0 ] - 1 ] - = 1 timer + = 1 ctr + = 1 # Updating the ready queue until all the processes arrive checkNewArrival(timer, arrival, n, maxProccessIndex, queue) if ((temp_burst[queue[ 0 ] - 1 ] = = 0 ) and (complete[queue[ 0 ] - 1 ] = = False )): # turn currently stores exit times turn[queue[ 0 ] - 1 ] = timer complete[queue[ 0 ] - 1 ] = True # checks whether or not CPU is idle idle = True if (queue[n - 1 ] = = 0 ): for k in range (n): if (queue[k] ! = 0 ): if (complete[queue[k] - 1 ] = = False ): idle = False else : idle = False if (idle): timer + = 1 checkNewArrival(timer, arrival, n, maxProccessIndex, queue) # Maintaining the entries of processes aftereach premption in the ready Queue queueMaintainence(queue, n) for i in range (n): turn[i] = turn[i] - arrival[i] wait[i] = turn[i] - burst[i] print ( "\nProgram No.\tArrival Time\tBurst Time\tWait Time\tTurnAround Time\n" ) for i in range (n): print (i + 1 , "\t\t" , arrival[i], "\t\t" , burst[i], "\t\t" , wait[i], "\t\t" , turn[i], "\n" ) for i in range (n): avgWait + = wait[i] avgTT + = turn[i] print ( "\nAverage wait time : " , (avgWait / / n)) print ( "\nAverage Turn Around Time : " , (avgTT / / n)) # This code is contributed by lokeshmvs21. |
C#
// C# program to implement Round Robin // Scheduling with different arrival time using System; class GFG { public static void roundRobin(String[] p, int [] a, int [] b, int n) { // result of average times int res = 0; int resc = 0; // for sequence storage String seq = "" ; // copy the burst array and arrival array // for not effecting the actual array int [] res_b = new int [b.Length]; int [] res_a = new int [a.Length]; for ( int i = 0; i < res_b.Length; i++) { res_b[i] = b[i]; res_a[i] = a[i]; } // critical time of system int t = 0; // for store the waiting time int [] w = new int [p.Length]; // for store the Completion time int [] comp = new int [p.Length]; while ( true ) { Boolean flag = true ; for ( int i = 0; i < p.Length; i++) { // these condition for if // arrival is not on zero // check that if there come before qtime if (res_a[i] <= t) { if (res_a[i] <= n) { if (res_b[i] > 0) { flag = false ; if (res_b[i] > n) { // make decrease the b time t = t + n; res_b[i] = res_b[i] - n; res_a[i] = res_a[i] + n; seq += "->" + p[i]; } else { // for last time t = t + res_b[i]; // store comp time comp[i] = t - a[i]; // store wait time w[i] = t - b[i] - a[i]; res_b[i] = 0; // add sequence seq += "->" + p[i]; } } } else if (res_a[i] > n) { // is any have less arrival time // the coming process then execute // them for ( int j = 0; j < p.Length; j++) { // compare if (res_a[j] < res_a[i]) { if (res_b[j] > 0) { flag = false ; if (res_b[j] > n) { t = t + n; res_b[j] = res_b[j] - n; res_a[j] = res_a[j] + n; seq += "->" + p[j]; } else { t = t + res_b[j]; comp[j] = t - a[j]; w[j] = t - b[j] - a[j]; res_b[j] = 0; seq += "->" + p[j]; } } } } // now the previous process // according to ith is process if (res_b[i] > 0) { flag = false ; // Check for greaters if (res_b[i] > n) { t = t + n; res_b[i] = res_b[i] - n; res_a[i] = res_a[i] + n; seq += "->" + p[i]; } else { t = t + res_b[i]; comp[i] = t - a[i]; w[i] = t - b[i] - a[i]; res_b[i] = 0; seq += "->" + p[i]; } } } } // if no process is come on the critical else if (res_a[i] > t) { t++; i--; } } // for exit the while loop if (flag) { break ; } } Console.WriteLine( "name ctime wtime" ); for ( int i = 0; i < p.Length; i++) { Console.WriteLine( " " + p[i] + "\t" + comp[i] + "\t" + w[i]); res = res + w[i]; resc = resc + comp[i]; } Console.WriteLine( "Average waiting time is " + ( float )res / p.Length); Console.WriteLine( "Average compilation time is " + ( float )resc / p.Length); Console.WriteLine( "Sequence is like that " + seq); } // Driver Code public static void Main(String[] args) { // name of the process String[] name = { "p1" , "p2" , "p3" , "p4" }; // arrival for every process int [] arrivaltime = { 0, 1, 2, 3 }; // burst time for every process int [] bursttime = { 10, 4, 5, 3 }; // quantum time of each process int q = 3; // cal the function for output roundRobin(name, arrivaltime, bursttime, q); } } // This code is contributed by Rajput-Ji |
Javascript
<script> const queueUpdation = (queue, timer, arrival, n, maxProccessIndex) => { let zeroIndex; for (let i = 0; i < n; i++) { if (queue[i] == 0) { zeroIndex = i; break ; } } queue[zeroIndex] = maxProccessIndex + 1; } const queueMaintainence = (queue, n) => { for (let i = 0; (i < n - 1) && (queue[i + 1] != 0); i++) { let temp = queue[i]; queue[i] = queue[i + 1]; queue[i + 1] = temp; } } const checkNewArrival = (timer, arrival, n, maxProccessIndex, queue) => { if (timer <= arrival[n - 1]) { let newArrival = false ; for (let j = (maxProccessIndex + 1); j < n; j++) { if (arrival[j] <= timer) { if (maxProccessIndex < j) { maxProccessIndex = j; newArrival = true ; } } } //adds the incoming process to the ready queue //(if any arrives) if (newArrival) queueUpdation(queue, timer, arrival, n, maxProccessIndex); } } //Driver Code let n = 4; let tq = 2; let timer = 0; let maxProccessIndex = 0; let avgWait = 0; let avgTT = 0; const wait = []; const turn = []; const queue = []; const temp_burst = []; const complete = []; const arrival = [0, 1, 2, 3]; const burst = [5, 4, 2, 1]; for (let i = 0; i < n; i++) { temp_burst[i] = burst[i]; } for (let i = 0; i < n; i++) { //Initializing the queue and complete array complete[i] = false ; queue[i] = 0; } while (timer < arrival[0]) //Incrementing Timer until the first process arrives timer++; queue[0] = 1; while ( true ) { let flag = true ; for (let i = 0; i < n; i++) { if (temp_burst[i] != 0) { flag = false ; break ; } } if (flag) break ; for (let i = 0; (i < n) && (queue[i] != 0); i++) { let ctr = 0; while ((ctr < tq) && (temp_burst[queue[0] - 1] > 0)) { temp_burst[queue[0] - 1] -= 1; timer += 1; ctr++; // Checking and Updating the ready queue until all the processes arrive checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } // If a process is completed then store its exit time // and mark it as completed if ((temp_burst[queue[0] - 1] == 0) && (complete[queue[0] - 1] == false )) { //turn array currently stores the completion time turn[queue[0] - 1] = timer; complete[queue[0] - 1] = true ; } // checks whether or not CPU is idle let idle = true ; if (queue[n - 1] == 0) { for (let i = 0; i < n && queue[i] != 0; i++) { if (complete[queue[i] - 1] == false ) { idle = false ; } } } else idle = false ; if (idle) { timer++; checkNewArrival(timer, arrival, n, maxProccessIndex, queue); } //Maintaining the entries of processes //after each premption in the ready Queue queueMaintainence(queue, n); } } for (let i = 0; i < n; i++) { turn[i] = turn[i] - arrival[i]; wait[i] = turn[i] - burst[i]; } console.log(`Time Quanta : ${tq}`); console.log(`Number of Processes : ${n}`); console.log(`Arrival Time of Processes : ${arrival}`); console.log(`Burst Time of Processes : ${burst}`); console.log( "\nProgram No.\tArrival Time\tBurst Time\tWait Time\tTurnAround Time\n" ); for (let i = 0; i < n; i++) { console.log(`${i + 1}\t\t\t ${arrival[i]}\t\t\t ${burst[i]}\t\t\t\t ${wait[i]} \t\t\t\t ${turn[i]} \n`); } for (let i = 0; i < n; i++) { avgWait += wait[i]; avgTT += turn[i]; } console.log(`\nAverage wait time : ${avgWait / n}`); console.log(`\nAverage Turn Around Time : ${avgTT / n}`); // This code is contributed by akashish_. </script> |
Output:
Enter the time quanta : 2 Enter the number of processes : 4 Enter the arrival time of the processes : 0 1 2 3 Enter the burst time of the processes : 5 4 2 1 Program No. Arrival Time Burst Time Wait Time TurnAround Time 1 0 5 7 12 2 1 4 6 10 3 2 2 2 4 4 3 1 5 6 Average wait time : 5 Average Turn Around Time : 8
In case of any queries or a problem with the code, please write it in the comment section.
Note: A slightly optimized version of the above-implemented code could be done by using Queue data structure as follows:
C++
#include <bits/stdc++.h> using namespace std; struct Process { int pid; int arrivalTime; int burstTime; int burstTimeRemaining; // the amount of CPU time remaining after each execution int completionTime; int turnaroundTime; int waitingTime; bool isComplete; bool inQueue; }; /* * At every time quantum or when a process has been executed before the time quantum, * check for any new arrivals and push them into the queue */ void checkForNewArrivals(Process processes[], const int n, const int currentTime, queue< int > &readyQueue) { for ( int i = 0; i < n; i++) { Process p = processes[i]; // checking if any processes has arrived // if so, push them in the ready Queue. if (p.arrivalTime <= currentTime && !p.inQueue && !p.isComplete) { processes[i].inQueue = true ; readyQueue.push(i); } } } /* * Context switching takes place at every time quantum * At every iteration, the burst time of the processes in the queue are handled using this method */ void updateQueue(Process processes[], const int n, const int quantum, queue< int > &readyQueue, int ¤tTime, int &programsExecuted) { int i = readyQueue.front(); readyQueue.pop(); // if the process is going to be finished executing, // ie, when it's remaining burst time is less than time quantum // mark it completed and increment the current time // and calculate its waiting time and turnaround time if (processes[i].burstTimeRemaining <= quantum) { processes[i].isComplete = true ; currentTime += processes[i].burstTimeRemaining; processes[i].completionTime = currentTime; processes[i].waitingTime = processes[i].completionTime - processes[i].arrivalTime - processes[i].burstTime; processes[i].turnaroundTime = processes[i].waitingTime + processes[i].burstTime; if (processes[i].waitingTime < 0) processes[i].waitingTime = 0; processes[i].burstTimeRemaining = 0; // if all the processes are not yet inserted in the queue, // then check for new arrivals if (programsExecuted != n) { checkForNewArrivals(processes, n, currentTime, readyQueue); } } else { // the process is not done yet. But it's going to be pre-empted // since one quantum is used // but first subtract the time the process used so far processes[i].burstTimeRemaining -= quantum; currentTime += quantum; // if all the processes are not yet inserted in the queue, // then check for new arrivals if (programsExecuted != n) { checkForNewArrivals(processes, n, currentTime, readyQueue); } // insert the incomplete process back into the queue readyQueue.push(i); } } /* * Just a function that outputs the result in terms of their PID. */ void output(Process processes[], const int n) { double avgWaitingTime = 0; double avgTurntaroundTime = 0; // sort the processes array by processes.PID sort(processes, processes + n, []( const Process &p1, const Process &p2) { return p1.pid < p2.pid; }); for ( int i = 0; i < n; i++) { cout << "Process " << processes[i].pid << ": Waiting Time: " << processes[i].waitingTime << " Turnaround Time: " << processes[i].turnaroundTime << endl; avgWaitingTime += processes[i].waitingTime; avgTurntaroundTime += processes[i].turnaroundTime; } cout << "Average Waiting Time: " << avgWaitingTime / n << endl; cout << "Average Turnaround Time: " << avgTurntaroundTime / n << endl; } /* * This function assumes that the processes are already sorted according to their arrival time */ void roundRobin(Process processes[], int n, int quantum) { queue< int > readyQueue; readyQueue.push(0); // initially, pushing the first process which arrived first processes[0].inQueue = true ; int currentTime = 0; // holds the current time after each process has been executed int programsExecuted = 0; // holds the number of programs executed so far while (!readyQueue.empty()) { updateQueue(processes, n, quantum, readyQueue, currentTime, programsExecuted); } } int main() { int n, quantum; cout << "Enter the number of processes: " ; cin >> n; cout << "Enter time quantum: " ; cin >> quantum; Process processes[n + 1]; for ( int i = 0; i < n; i++) { cout << "Enter arrival time and burst time of each process " << i + 1 << ": " ; cin >> processes[i].arrivalTime; cin >> processes[i].burstTime; processes[i].burstTimeRemaining = processes[i].burstTime; processes[i].pid = i + 1; cout << endl; } // stl sort in terms of arrival time sort(processes, processes + n, []( const Process &p1, const Process &p2) { return p1.arrivalTime < p2.arrivalTime; }); roundRobin(processes, n, quantum); output(processes, n); return 0; } |
Java
// Java Code import java.util.Arrays; import java.util.LinkedList; import java.util.Queue; class GFG { // At every time quantum or when a process has been // executed before the time quantum, check for any new // arrivals and push them into the queue public static void checkForNewArrivals(Process[] processes, int n, int currentTime, Queue<Integer> readyQueue) { for ( int i = 0 ; i < n; i++) { Process p = processes[i]; // checking if any processes has arrived // if so, push them in the ready Queue. if (p.arrivalTime <= currentTime && !p.inQueue && !p.isComplete) { processes[i].inQueue = true ; readyQueue.add(i); } } } // Context switching takes place at every time quantum // At every iteration, the burst time of the processes // in the queue are handled using this method public static void updateQueue(Process[] processes, int n, int quantum, Queue<Integer> readyQueue, int currentTime, int programsExecuted) { int i = readyQueue.remove(); // if the process is going to be finished executing, // ie, when it's remaining burst time is less than // time quantum mark it completed and increment the // current time and calculate its waiting time and // turnaround time if (processes[i].burstTimeRemaining <= quantum) { processes[i].isComplete = true ; currentTime += processes[i].burstTimeRemaining; processes[i].completionTime = currentTime; processes[i].waitingTime = processes[i].completionTime - processes[i].arrivalTime - processes[i].burstTime; processes[i].turnaroundTime = processes[i].waitingTime + processes[i].burstTime; if (processes[i].waitingTime < 0 ) processes[i].waitingTime = 0 ; processes[i].burstTimeRemaining = 0 ; // if all the processes are not yet inserted in // the queue, then check for new arrivals if (programsExecuted != n) { checkForNewArrivals( processes, n, currentTime, readyQueue); } } else { // the process is not done yet. But it's going // to be pre-empted since one quantum is used // but first subtract the time the process used // so far processes[i].burstTimeRemaining -= quantum; currentTime += quantum; // if all the processes are not yet inserted in // the queue, then check for new arrivals if (programsExecuted != n) { checkForNewArrivals( processes, n, currentTime, readyQueue); } // insert the incomplete process back into the // queue readyQueue.add(i); } } // Just a function that outputs the result in terms of // their PID. public static void output(Process[] processes, int n) { double avgWaitingTime = 0 ; double avgTurntaroundTime = 0 ; // sort the processes array by processes.PID Arrays.sort(processes, (Process p1, Process p2) -> { return p1.pid - p2.pid; }); for ( int i = 0 ; i < n; i++) { System.out.println( "Process " + processes[i].pid + ": Waiting Time: " + processes[i].waitingTime + " Turnaround Time: " + processes[i].turnaroundTime); avgWaitingTime += processes[i].waitingTime; avgTurntaroundTime += processes[i].turnaroundTime; } System.out.println( "Average Waiting Time: " + avgWaitingTime / n); System.out.println( "Average Turnaround Time: " + avgTurntaroundTime / n); } /* * This function assumes that the processes are already * sorted according to their arrival time */ public static void roundRobin(Process[] processes, int n, int quantum) { Queue<Integer> readyQueue = new LinkedList<Integer>(); readyQueue.add( 0 ); // initially, pushing the first // process which arrived first processes[ 0 ].inQueue = true ; int currentTime = 0 ; // holds the current time after each // process has been executed int programsExecuted = 0 ; // holds the number of programs executed so // far while (!readyQueue.isEmpty()) { updateQueue(processes, n, quantum, readyQueue, currentTime, programsExecuted); } } public static class Process { int pid; int arrivalTime; int burstTime; int burstTimeRemaining; // the amount of CPU time // remaining after each // execution int completionTime; int turnaroundTime; int waitingTime; boolean isComplete; boolean inQueue; } public static void main(String[] args) { int n, quantum; System.out.println( "Enter the number of processes: " ); n = Integer.parseInt(System.console().readLine()); System.out.println( "Enter time quantum: " ); quantum = Integer.parseInt(System.console().readLine()); Process[] processes = new Process[n + 1 ]; for ( int i = 0 ; i < n; i++) { System.out.println( "Enter arrival time and burst time of each process " + (i + 1 ) + ": " ); processes[i].arrivalTime = Integer.parseInt( System.console().readLine()); processes[i].burstTime = Integer.parseInt( System.console().readLine()); processes[i].burstTimeRemaining = processes[i].burstTime; processes[i].pid = i + 1 ; System.out.println(); } // stl sort in terms of arrival time Arrays.sort(processes, (Process p1, Process p2) -> { return p1.arrivalTime - p2.arrivalTime; }); roundRobin(processes, n, quantum); output(processes, n); } } // This code is contributed by akashish__ |
Python3
# Python Code class Process: def __init__( self ): self .pid = 0 self .arrivalTime = 0 self .burstTime = 0 self .burstTimeRemaining = 0 self .completionTime = 0 self .turnaroundTime = 0 self .waitingTime = 0 self .isComplete = False self .inQueue = False # At every time quantum or when a process has been executed before the time quantum, # check for any new arrivals and push them into the queue def check_for_new_arrivals(processes, n, current_time, ready_queue): for i in range (n): p = processes[i] # checking if any processes has arrived # if so, push them in the ready Queue. if p.arrivalTime < = current_time and not p.inQueue and not p.isComplete: processes[i].inQueue = True ready_queue.append(i) # Context switching takes place at every time quantum # At every iteration, the burst time of the processes in the queue are handled using this method def update_queue(processes, n, quantum, ready_queue, current_time, programs_executed): i = ready_queue[ 0 ] ready_queue.pop( 0 ) # if the process is going to be finished executing, # ie, when it's remaining burst time is less than time quantum # mark it completed and increment the current time # and calculate its waiting time and turnaround time if processes[i].burstTimeRemaining < = quantum: processes[i].isComplete = True current_time + = processes[i].burstTimeRemaining processes[i].completionTime = current_time processes[i].waitingTime = processes[i].completionTime - processes[i].arrivalTime - processes[i].burstTime processes[i].turnaroundTime = processes[i].waitingTime + processes[i].burstTime if processes[i].waitingTime < 0 : processes[i].waitingTime = 0 processes[i].burstTimeRemaining = 0 # if all the processes are not yet inserted in the queue, # then check for new arrivals if programs_executed ! = n: check_for_new_arrivals(processes, n, current_time, ready_queue) else : # the process is not done yet. But it's going to be pre-empted # since one quantum is used # but first subtract the time the process used so far processes[i].burstTimeRemaining - = quantum current_time + = quantum # if all the processes are not yet inserted in the queue, # then check for new arrivals if programs_executed ! = n: check_for_new_arrivals(processes, n, current_time, ready_queue) # insert the incomplete process back into the queue ready_queue.append(i) # Just a function that outputs the result in terms of their PID. def output(processes, n): avg_waiting_time = 0 avg_turntaround_time = 0 # sort the processes array by processes.PID processes.sort(key = lambda p: p.pid) for i in range (n): print ( "Process " , processes[i].pid, ": Waiting Time: " , processes[i].waitingTime, " Turnaround Time: " , processes[i].turnaroundTime, sep = "") avg_waiting_time + = processes[i].waitingTime avg_turntaround_time + = processes[i].turnaroundTime print ( "Average Waiting Time: " , avg_waiting_time / n) print ( "Average Turnaround Time: " , avg_turntaround_time / n) # This function assumes that the processes are already sorted according to their arrival time def round_robin(processes, n, quantum): ready_queue = [] ready_queue.append( 0 ) # initially, pushing the first process which arrived first processes[ 0 ].inQueue = True current_time = 0 # holds the current time after each process has been executed programs_executed = 0 # holds the number of programs executed so far while len (ready_queue) ! = 0 : update_queue(processes, n, quantum, ready_queue, current_time, programs_executed) def main(): n = int ( input ( "Enter the number of processes: " )) quantum = int ( input ( "Enter time quantum: " )) processes = [] for i in range (n): print ( "Enter arrival time and burst time of each process " , i + 1 , ": " , sep = " ", end=" ") arrival_time = int ( input ()) burst_time = int ( input ()) proc = Process() proc.arrivalTime = arrival_time proc.burstTime = burst_time proc.burstTimeRemaining = burst_time proc.pid = i + 1 processes.append(proc) print ("") # stl sort in terms of arrival time processes.sort(key = lambda p: p.arrivalTime) round_robin(processes, n, quantum) output(processes, n) main() # This code is contributed by akashish__ |
C#
// C# Code using System; using System.Collections.Generic; using System.Linq; class GFG { // At every time quantum or when a process has been // executed before the time quantum, check for any new // arrivals and push them into the queue public static void checkForNewArrivals(Process[] processes, int n, int currentTime, Queue< int > readyQueue) { for ( int i = 0; i < n; i++) { Process p = processes[i]; // checking if any processes has arrived // if so, push them in the ready Queue. if (p.arrivalTime <= currentTime && !p.inQueue && !p.isComplete) { processes[i].inQueue = true ; readyQueue.Enqueue(i); } } } // Context switching takes place at every time quantum // At every iteration, the burst time of the processes // in the queue are handled using this method public static void updateQueue(Process[] processes, int n, int quantum, Queue< int > readyQueue, int currentTime, int programsExecuted) { int i = readyQueue.Dequeue(); // if the process is going to be finished executing, // ie, when it's remaining burst time is less than // time quantum mark it completed and increment the // current time and calculate its waiting time and // turnaround time if (processes[i].burstTimeRemaining <= quantum) { processes[i].isComplete = true ; currentTime += processes[i].burstTimeRemaining; processes[i].completionTime = currentTime; processes[i].waitingTime = processes[i].completionTime - processes[i].arrivalTime - processes[i].burstTime; processes[i].turnaroundTime = processes[i].waitingTime + processes[i].burstTime; if (processes[i].waitingTime < 0) processes[i].waitingTime = 0; processes[i].burstTimeRemaining = 0; // if all the processes are not yet inserted in // the queue, then check for new arrivals if (programsExecuted != n) { checkForNewArrivals( processes, n, currentTime, readyQueue); } } else { // the process is not done yet. But it's going // to be pre-empted since one quantum is used // but first subtract the time the process used // so far processes[i].burstTimeRemaining -= quantum; currentTime += quantum; // if all the processes are not yet inserted in // the queue, then check for new arrivals if (programsExecuted != n) { checkForNewArrivals( processes, n, currentTime, readyQueue); } // insert the incomplete process back into the // queue readyQueue.Enqueue(i); } } // Just a function that outputs the result in terms of // their PID. public static void output(Process[] processes, int n) { double avgWaitingTime = 0; double avgTurntaroundTime = 0; // sort the processes array by processes.PID processes = processes.OrderBy(p => p.pid).ToArray(); for ( int i = 0; i < n; i++) { Console.WriteLine( "Process " + processes[i].pid + ": Waiting Time: " + processes[i].waitingTime + " Turnaround Time: " + processes[i].turnaroundTime); avgWaitingTime += processes[i].waitingTime; avgTurntaroundTime += processes[i].turnaroundTime; } Console.WriteLine( "Average Waiting Time: " + avgWaitingTime / n); Console.WriteLine( "Average Turnaround Time: " + avgTurntaroundTime / n); } /* * This function assumes that the processes are already * sorted according to their arrival time */ public static void roundRobin(Process[] processes, int n, int quantum) { Queue< int > readyQueue = new Queue< int >(); readyQueue.Enqueue(0); // initially, pushing the first // process which arrived first processes[0].inQueue = true ; int currentTime = 0; // holds the current time after each // process has been executed int programsExecuted = 0; // holds the number of programs executed so // far while (readyQueue.Count() > 0) { updateQueue(processes, n, quantum, readyQueue, currentTime, programsExecuted); } } public class Process { public int pid; public int arrivalTime; public int burstTime; public int burstTimeRemaining; // the amount of CPU time // remaining after each // execution public int completionTime; public int turnaroundTime; public int waitingTime; public bool isComplete; public bool inQueue; } public static void Main(String[] args) { int n, quantum; Console.WriteLine( "Enter the number of processes: " ); n = int .Parse(Console.ReadLine()); Console.WriteLine( "Enter time quantum: " ); quantum = int .Parse(Console.ReadLine()); Process[] processes = new Process[n + 1]; for ( int i = 0; i < n; i++) { Console.WriteLine( "Enter arrival time and burst time of each process " + (i + 1) + ": " ); processes[i].arrivalTime = int .Parse( Console.ReadLine()); processes[i].burstTime = int .Parse( Console.ReadLine()); processes[i].burstTimeRemaining = processes[i].burstTime; processes[i].pid = i + 1; Console.WriteLine(); } // stl sort in terms of processes.OrderBy(p => p.arrivalTime).ToArray(); roundRobin(processes, n, quantum); output(processes, n); } } // This code is contributed by akashish__ |
Enter the number of processes: 4 Enter time quantum: 2 Enter the arrival time and burst time of each process: 0 5 1 4 2 2 3 1 Process 1: Waiting Time: 7 Turnaround Time: 12 Process 2: Waiting Time: 6 Turnaround Time: 10 Process 3: Waiting Time: 2 Turnaround Time: 4 Process 4: Waiting Time: 5 Turnaround Time: 6 Average Waiting Time: 5 Average Turnaround Time: 8
Please Login to comment...